[1] De Vasconcelos N M, Van Opdenbosch N, Van Gorp H, et al. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture [J]. Cell Death Differ, 2019, 26(1): 146-161. [2] Hu Y, Wang B, Li S, et al. Pyroptosis, and its role in central nervous system disease [J]. J Mol Biol, 2022, 434(4): 167379. [3] Wang Q, Wu J, Zeng Y, et al. Pyroptosis: a pro-inflammatory type of cell death in cardiovascular disease [J]. Clin Chim Acta, 2020, 510: 62-72. [4] Zheng X, Chen W, Gong F, et al. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: a review [J]. Front Immunol, 2021, 12: 711939. [5] Eslam M, Newsome P N, Sarin S K, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement [J]. J Hepatol, 2020, 73(1): 202-209. [6] Ciardullo S, Perseghin G. Prevalence of NAFLD, MAFLD and associated advanced fibrosis in the contemporary United States population [J]. Liver Int, 2021, 41(6): 1290-1293. [7] Taylor R S, Taylor R J, Bayliss S, et al. Association between fibrosis stage and outcomes of patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis [J]. Gastroenterology, 2020, 158(6): 1611-1625.e12. [8] Liang Y, Chen H, Liu Y, et al. Association of MAFLD with diabetes, chronic kidney disease, and cardiovascular disease: a 4.6-year cohort study in China [J]. J Clin Endocrinol Metab, 2022, 107(1): 88-97. [9] Eslam M, Sarin S K, Wong V W, et al. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease [J]. Hepatol Int, 2020, 14(6): 889-919. [10] Chen Z, Yu Y, Cai J, et al. Emerging molecular targets for treatment of nonalcoholic fatty liver disease [J]. Trends Endocrinol Metab, 2019, 30(12): 903-914. [11] Knorr J, Wree A, Feldstein A E. Pyroptosis in steatohepatitis and liver diseases [J]. J Mol Biol, 2022, 434(4): 167271. [12] Friedman S L, Neuschwander-Tetri B A, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies [J]. Nat Med, 2018, 24(7): 908-922. [13] Azzu V, Vacca M, Virtue S, et al. Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease [J]. Gastroenterology, 2020, 158(7): 1899-1912. [14] Aron-Wisnewsky J, Warmbrunn M V, Nieuwdorp M, et al. Nonalcoholic fatty liver disease: modulating gut microbiota to improve severity? [J]. Gastroenterology, 2020, 158(7): 1881-1898. [15] Singh S, Allen A M, Wang Z, et al. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies [J]. Clin Gastroenterol Hepatol, 2015, 13(4): 643-654.e1-9; quiz e39-40. [16] McPherson S, Hardy T, Henderson E, et al. Evidence of NAFLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: implications for prognosis and clinical management [J]. J Hepatol, 2015, 62(5): 1148-1155. [17] Koyama Y, Brenner D A. Liver inflammation and fibrosis [J]. J Clin Invest, 2017, 127(1): 55-64. [18] Pierantonelli I, Svegliati-Baroni G. Nonalcoholic fatty liver disease: basic pathogenetic mechanisms in the progression from NAFLD to NASH [J]. Transplantation, 2019, 103(1): e1-e13. [19] Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death [J]. Nature, 2015, 526(7575): 660-665. [20] Kayagaki N, Stowe I B, Lee B L, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling [J]. Nature, 2015, 526(7575): 666-671. [21] Gaul S, Leszczynska A, Alegre F, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis [J]. J Hepatol, 2021, 74(1): 156-167. [22] Xu B, Jiang M, Chu Y, et al. Gasdermin D plays a key role as a pyroptosis executor of non-alcoholic steatohepatitis in humans and mice [J]. J Hepatol, 2018, 68(4): 773-782. [23] Zhu Y, Zhao H, Lu J, et al. Caspase-11-mediated hepatocytic pyroptosis promotes the progression of nonalcoholic steatohepatitis [J]. Cell Mol Gastroenterol Hepatol, 2021, 12(2): 653-664. [24] Lu F, Lan Z, Xin Z, et al. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases [J]. J Cell Physiol, 2020, 235(4): 3207-3221. [25] Xu L, Zhou J, Che J, et al. Mitochondrial DNA enables AIM2 inflammasome activation and hepatocyte pyroptosis in nonalcoholic fatty liver disease [J]. Am J Physiol Gastrointest Liver Physiol, 2021, 320(6): G1034-G1044. [26] Koh E H, Yoon J E, Ko M S, et al. Sphingomyelin synthase 1 mediates hepatocyte pyroptosis to trigger non-alcoholic steatohepatitis [J]. Gut, 2021, 70(10): 1954-1964. [27] Chen Y, Ma K. NLRC4 inflammasome activation regulated by TNF-α promotes inflammatory responses in nonalcoholic fatty liver disease [J]. Biochem Biophys Res Commun, 2019, 511(3): 524-530. [28] Feng Y, Li W, Wang Z, et al. The p-STAT3/ANXA2 axis promotes caspase-1-mediated hepatocyte pyroptosis in non-alcoholic steatohepatitis [J]. J Transl Med, 2022, 20(1): 497. [29] Lin Y, Hu Y, Hu X, et al. Ginsenoside Rb2 improves insulin resistance by inhibiting adipocyte pyroptosis [J]. Adipocyte, 2020, 9(1): 302-312. [30] Ehses J A, Perren A, Eppler E, et al. Increased number of islet-associated macrophages in type 2 diabetes [J]. Diabetes, 2007, 56(9): 2356-2370. [31] Jager J, Grémeaux T, Cormont M, et al. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression [J]. Endocrinology, 2007, 148(1): 241-251. [32] Malozowski S, Sahlroot J T. Interleukin-1-receptor antagonist in type 2 diabetes mellitus [J]. N Engl J Med, 2007, 357(3): 302-303; author reply 3. [33] Rheinheimer J, de Souza B M, Cardoso N S, et al. Current role of the NLRP3 inflammasome on obesity and insulin resistance: a systematic review [J]. Metabolism, 2017, 74: 1-9. [34] Murphy A J, Kraakman M J, Kammoun H L, et al. IL-18 Production from the NLRP1 inflammasome prevents obesity and metabolic syndrome [J]. Cell Metab, 2016, 23(1): 155-164. [35] Lee H M, Kim J J, Kim H J, et al. Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes [J]. Diabetes, 2013, 62(1): 194-204. [36] Kursawe R, Dixit V D, Scherer P E, et al. A role of the inflammasome in the low storage capacity of the abdominal subcutaneous adipose tissue in obese adolescents [J]. Diabetes, 2016, 65(3): 610-618. [37] Yu X, Hao M, Liu Y, et al. Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy [J]. Eur J Pharmacol, 2019, 864: 172715. [38] Huang Q, Xin X, Sun Q, et al. Plant-derived bioactive compounds regulate the NLRP3 inflammasome to treat NAFLD [J]. Front Pharmacol, 2022, 13: 896899. [39] Hao Y Y, Cui W W, Gao H L, et al. Jinlida granules ameliorate the high-fat-diet induced liver injury in mice by antagonising hepatocytes pyroptosis [J]. Pharm Biol, 2022, 60(1): 274-281. [40] Liu Y, Wang D W, Wang D, et al. Exenatide attenuates non-alcoholic steatohepatitis by inhibiting the pyroptosis signaling pathway [J]. Front Endocrinol (Lausanne), 2021, 12: 663039. [41] Yong Z, Ruiqi W, Hongji Y, et al. Mangiferin ameliorates HFD-Induced NAFLD through regulation of the AMPK and NLRP3 inflammasome signal pathways [J]. J Immunol Res, 2021, 2021: 4084566. [42] Shi H, Zhang Y, Xing J, et al. Baicalin attenuates hepatic injury in non-alcoholic steatohepatitis cell model by suppressing inflammasome-dependent GSDMD-mediated cell pyroptosis [J]. Int Immunopharmacol, 2020, 81: 106195. [43] Shi H, Qiao F, Lu W, et al. Baicalin improved hepatic injury of NASH by regulating NRF2/HO-1/NRLP3 pathway [J]. Eur J Pharmacol, 2022, 934: 175270. [44] Ruan S, Han C, Sheng Y, et al. Antcin A alleviates pyroptosis and inflammatory response in Kupffercells of non-alcoholic fatty liver disease by targeting NLRP3 [J]. Int Immunopharmacol, 2021, 100: 108126. [45] Zhan Z Y, Wu M, Shang Y, et al. Taxifolin ameliorate high-fat-diet feeding plus acute ethanol binge-induced steatohepatitis through inhibiting inflammatory caspase-1-dependent pyroptosis [J]. Food Funct, 2021, 12(1): 362-372. [46] Mai W, Xu Y, Xu J, et al. Berberine inhibits nod-like receptor family pyrin domain containing 3 inflammasome activation and pyroptosis in nonalcoholic steatohepatitis via the ROS/TXNIP axis [J]. Front Pharmacol, 2020, 11: 185. [47] Biao Y, Chen J, Liu C, et al. Protective effect of danshen zexie decoction against non-alcoholic fatty liver disease through inhibition of ROS/NLRP3/IL-1β Pathway by Nrf2 signaling activation [J]. Front Pharmacol, 2022, 13: 877924. [48] Shen T, Lei T, Chen L, et al. Gardenoside hinders caspase-1-mediated hepatocyte pyroptosis through the CTCF/DPP4 signaling pathway [J]. Front Physiol, 2021, 12: 669202. [49] Oh S, Son M, Byun K A, et al. Attenuating effects of dieckol on high-fat diet-induced nonalcoholic fatty liver disease by decreasing the NLRP3 inflammasome and pyroptosis [J]. Mar Drugs, 2021, 19(6):318. [50] Gao X, Liu S, Tan L, et al. Estrogen receptor α regulates metabolic-associated fatty liver disease by targeting NLRP3-GSDMD axis-mediated hepatocyte pyroptosis [J]. J Agric Food Chem, 2021, 69(48): 14544-14556. [51] Zhang X, Shang X, Jin S, et al. Vitamin D ameliorates high-fat-diet-induced hepatic injury via inhibiting pyroptosis and alters gut microbiota in rats [J]. Arch Biochem Biophys, 2021, 705: 108894. [52] Zhu J, Wen Y, Zhang Q, et al. The monomer TEC of blueberry improves NASH by augmenting tRF-47-mediated autophagy/pyroptosis signaling pathway [J]. J Transl Med, 2022, 20(1): 128. [53] Zhong H, Liu M, Ji Y, et al. Genipin reverses HFD-induced liver damage and inhibits UCP2-mediated pyroptosis in mice [J]. Cell Physiol Biochem, 2018, 49(5): 1885-1897. [54] Yin K, Zhou X, Jiang W, et al. Jiangzhi ligan decoction inhibits GSDMD-mediated canonical/noncanonical pyroptosis pathways and alleviates high-fat diet-induced nonalcoholic fatty liver disease [J]. Dis Markers, 2021, 2021: 9963534. |