[1] 秦勇, 黄圣杰, 王金龙, 等. 急性肝衰竭诊治进展[J]. 新医学, 2020, 51(10): 736-740. [2] Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity[J]. Cell Biosci, 2022, 12(1): 187. [3] Chen C, Zhang S Y, Chen L. Review of clinical characteristics, immune responses and regulatory mechanisms of hepatitis E-associated liver failure[J]. World J Clin Cases, 2022, 10(19): 6341-6348. [4] Guillot A, Tacke F. Liver macrophages: old dogmas and new insights[J]. Hepatol Commun, 2019, 3(6): 730-743. [5] Yang T, Wang H, Wang X, et al. The dual role of innate immune response in acetaminophen-induced liver injury[J]. Biology (Basel), 2022, 11(7): 1057. [6] Groeneveld D, Cline-Fedewa H, Baker K S, et al. Von Willebrand factor delays liver repair after acetaminophen-induced acute liver injury in mice[J]. J Hepatol, 2020, 72(1): 146-155. [7] Elchaninov A V, Fatkhudinov T K, Vishnyakova P A, et al. Phenotypical and functional polymorphism of liver resident macrophages[J]. Cells, 2019, 8(9): 1032. [8] Wang T, Lu Z, Qu X H, et al. Chrysophanol-8-O-glucoside protects mice against acute liver injury by inhibiting autophagy in hepatic stellate cells and inflammatory response in liver-resident macrophages[J]. Front Pharmacol, 2022, 13:951521. [9] Muniandy K, Gothai S, Badran K M H, et al. Suppression of proinflammatory cytokines and mediators in LPS-induced RAW 264.7 macrophages by stem extract of alternanthera sessilis via the inhibition of the NF-kappaB pathway[J]. J Immunol Res, 2018, 2018:3430684. [10] Triantafyllou E, Gudd C L, Mawhin M A, et al. PD-1 blockade improves Kupffer cell bacterial clearance in acute liver injury[J]. J Clin Invest, 2021, 131(4): e140196. [11] Zhao J, Kim J W, Zhou Z, et al. Macrophage-inducible C-type lectin signaling exacerbates acetaminophen-induced liver injury by promoting kupffer cell activation in mice[J]. Mol Pharmacol, 2021, 99(2): 92-103. [12] Li Y, Du Y, Xu Z, et al. Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo[J]. J Lipid Res, 2022, 63(5): 100207. [13] Possamai L A, Thursz M R, Wendon J A, et al. Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure[J]. Journal of Hepatology, 2014, 61(2): 439-445. [14] Xiao F, Wang H W, Hu J J, et al. Fibrinogen-like protein 2 deficiency inhibits virus-induced fulminant hepatitis through abrogating inflammatory macrophage activation[J]. World J Gastroenterol, 2022, 28(4): 479-496. [15] Wang Y Q, Lan Y Y, Guo Y C, et al. Down-regulation of microRNA-138 improves immunologic function via negatively targeting p53 by regulating liver macrophage in mice with acute liver failure[J]. Biosci Rep, 2019, 39(7): BSR20190763. [16] Chen Q, Zhang Q, Cao P, et al. NOD2-mediated HDAC6/NF-kappab signalling pathway regulates ferroptosis induced by extracellular histone H3 in acute liver failure[J]. J Cell Mol Med, 2022, 26(21): 5528-5538. [17] Wang G, Jin S, Huang W, et al. LPS-induced macrophage HMGB1-loaded extracellular vesicles trigger hepatocyte pyroptosis by activating the NLRP3 inflammasome[J]. Cell Death Discov, 2021, 7(1): 337. [18] Manakkat Vijay G K, Hu C, Peng J, et al. Ammonia-induced brain edema requires macrophage and T cell expression of toll-like receptor 9[J]. Cell Mol Gastroenterol Hepatol, 2019, 8(4): 609-623. [19] Wen Y, Lambrecht J, Ju C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18(1): 45-56. [20] Trovato F M, Zia R, Artru F, et al. Lysophosphatidylcholines modulate immunoregulatory checkpoints in peripheral monocytes and are associated with mortality in people with acute liver failure[J]. J Hepatol, 2023, 78(3): 558-573. [21] Ramavath N N, Gadipudi L L, Provera A, et al. Inducible T-cell costimulator mediates lymphocyte/macrophage interactions during liver repair[J]. Front Immunol, 2021, 12:786680. [22] Kubes P, Jenne C. Immune responses in the liver[J]. Annu Rev Immunol, 2018, 36:247-277. [23] Koda Y, Nakamoto N, Chu P S, et al. Plasmacytoid dendritic cells protect against immune-mediated acute liver injury via IL-35[J]. J Clin Invest, 2019, 129(8): 3201-3213. [24] Koda Y, Nakamoto N, Chu P S, et al. CCR9 axis inhibition enhances hepatic migration of plasmacytoid DCs and protects against liver injury[J]. JCI Insight, 2022, 7(17):e159910. [25] Chen Y, Hou C, Yang N, et al. Regulatory effect of JAK2/STAT3 on the immune function of endotoxin-tolerant dendritic cells and its involvement in acute liver failure[J]. J Clin Transl Hepatol, 2022, 10(5): 879-890. [26] Wang J, Cao X, Zhao J, et al. Critical roles of conventional dendritic cells in promoting T cell-dependent hepatitis through regulating natural killer T cells[J]. Clin Exp Immunol, 2017, 188(1): 127-137. [27] Liu K, Wang F S, Xu R. Neutrophils in liver diseases: pathogenesis and therapeutic targets[J]. Cell Mol Immunol, 2021, 18(1): 38-44. [28] Xu R, Huang H, Zhang Z, et al. The role of neutrophils in the development of liver diseases[J]. Cell Mol Immunol, 2014, 11(3): 224-231. [29] 石春霞, 陈倩, 王瑶, 等. 急性肝衰竭小鼠血清与组织中PTX3、HBP、PCT及IL-6、IL-1β、TNF-α的变化及诊断价值[J]. 医学研究杂志, 2020, 49(1): 28-33. [30] Li X, Gao Q, Wu W, et al. FGL2-MCOLN3-autophagy axis-triggered neutrophil extracellular traps exacerbate liver injury in fulminant viral hepatitis[J]. Cell Mol Gastroenterol Hepatol, 2022, 14(5): 1077-1101. [31] Liu J, Jiang M, Jin Q, et al. Modulation of HMGB1 release in APAP-induced liver injury: a possible strategy of chikusetsusaponin V targeting NETs formation[J]. Front Pharmacol, 2021, 12:723881. [32] Ye D, Yao J, Du W, et al. Neutrophil extracellular traps mediate acute liver failure in regulation of miR-223/neutrophil elastase signaling in mice[J]. Cell Mol Gastroenterol Hepatol, 2022, 14(3): 587-607. [33] Alvarenga D M, Mattos M S, Lopes M E, et al. Paradoxical role of matrix metalloproteinases in liver injury and regeneration after sterile acute hepatic failure[J]. Cells, 2018, 7(12): 247. [34] Zhai T T, Zhang J J, Zhang J, et al. Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice[J]. JHEP Reports, 2023, 5(4): 100687. [35] Graubardt N, Vugman M, MouhadeB O, et al. Ly6C(hi) monocytes and their macrophage descendants regulate neutrophil function and clearance in acetaminophen-induced liver injury[J]. Front Immunol, 2017, 8:626. [36] Srungaram P, Rule J A, Yuan H J, et al. Plasma osteopontin in acute liver failure[J]. Cytokine, 2015, 73(2): 270-276. [37] He C Y, Liang B B, Fan X Y, et al. The dual role of osteopontin in acetaminophen hepatotoxicity[J]. Acta Pharmacol Sin, 2012, 33(8): 1004-1012. [38] Yang W, Tao Y, Wu Y, et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair[J]. Nat Commun, 2019, 10(1): 1076. [39] Kolodziejczyk A A, Federici S, Zmora N, et al. Acute liver failure is regulated by MYC-and microbiome-dependent programs[J]. Nat Med, 2020, 26(12): 1899-1911. [40] Weber S, Benesic A, Neumann J, et al. Liver injury associated with metamizole exposure: features of an underestimated adverse event[J]. Drug Saf, 2021, 44(6): 669-680. [41] Xu L, Yang Y, Jiang J, et al. Eosinophils protect against acetaminophen-induced liver injury through cyclooxygenase-mediated IL-4/IL-13 production[J]. Hepatology, 2023, 77(2): 456-465. [42] Xu L, Yang Y, Wen Y, et al. Hepatic recruitment of eosinophils and their protective function during acute liver injury[J]. J Hepatol, 2022, 77(2): 344-352. [43] Zhang X, Wang P, Chen T, et al. Kctd9 deficiency impairs natural killer cell development and effector function[J]. Front Immunol, 2019, 10:744. [44] Fasbender F, Obholzer M, Metzler S, et al. Enhanced activation of human NK cells by drug-exposed hepatocytes[J]. Arch Toxicol, 2020, 94(2): 439-448. [45] Agrawal T, Maiwall R, Rajan V, et al. Higher circulating natural killer cells and lower lactate levels at admission predict spontaneous survival in non-acetaminophen induced acute liver failure[J]. Clin Immunol, 2021, 231:108829. [46] Martin-Murphy B V, Kominsky D J, Orlicky D J, et al. Increased susceptibility of natural killer T-cell-deficient mice to acetaminophen-induced liver injury[J]. Hepatology, 2013, 57(4): 1575-1584. [47] ZHao N, Hao J, Ni Y, et al. Vγ4 γδ T cell-derived IL-17A negatively regulates NKT cell function in Con A-induced fulminant hepatitis[J]. J Immunol, 2011, 187(10): 5007-5014. [48] Wu D, Yan W M, Wang H W, et al. Gammadelta T cells contribute to the outcome of murine fulminant viral hepatitis via effector cytokines TNF-alpha and IFN-gamma[J]. Curr Med Sci, 2018, 38(4): 648-655. [49] Rha M S, Han J W, Kim J H, et al. Human liver CD8(+) MAIT cells exert TCR/MR1-independent innate-like cytotoxicity in response to IL-15[J]. J Hepatol, 2020, 73(3): 640-650. [50] Cheng T C, Xue H, Li H, et al. MAIT cells predict long-term prognosis in liver failure patients[J]. Medicine (Baltimore), 2022, 101(34): e29809. |