[1] Chidiac A S, Buckley N A, Noghrehchi F, et al. Paracetamol (acetaminophen) overdose and hepatotoxicity: mechanism, treatment, prevention measures, and estimates of burden of disease[J]. Expert Opin Drug Metab Toxicol, 2023, 19(5): 297-317. [2] Sivilotti M, Yarema M C, Juurlink D N. Treating acetaminophen overdose[J]. CMAJ, 2022, 194(15): E554. [3] Luo G, Huang L, Zhang Z. The molecular mechanisms of acetaminophen-induced hepatotoxicity and its potential therapeutic targets[J]. Exp Biol Med (Maywood), 2023, 248(5): 412-424. [4] Bhushan B, Apte U. Liver regeneration after acetaminophen hepatotoxicity: mechanisms and therapeutic opportunities[J]. Am J Pathol, 2019, 189(4): 719-729. [5] Stulb H, Bachmann M, Gonther S, et al. Acetaminophen-induced liver injury exposes murine IL-22 as sex-related gene product[J]. Int J Mol Sci, 2021, 22(19):10623. [6] Xiong C, Jia Y, Wu X, et al. Early Postoperative Acetaminophen Administration and Severe Acute Kidney Injury After Cardiac Surgery[J]. Am J Kidney Dis, 2023, 81(6): 675-683 e1. [7] 冯艺飞, 王笑颖. 黄酮类化合物的研究概况[J]. 江西化工, 2021, 37(04): 102-4. [8] Gupta M, Ahmad J, Ahamad J, et al. Flavonoids as promising anticancer therapeutics: contemporary research, nanoantioxidant potential, and future scope[J]. Phytother Res, 2023, 37(11): 5159-5192. [9] Boniface P K, Fabrice F B, Paumo H K, et al. Protective roles and mechanism of action of plant flavonoids against hepatic impairment: recent developments[J]. Curr Drug Targets, 2023, 24(4): 332-360. [10] Atwi-ghaddar S, Zerwette L, Destandau E, et al. Exploring the sequential-selective supercritical fluid extraction (S(3)FE) of flavonoids and esterified triterpenoids from calendula officinalis L. flowers[J]. Molecules, 2023, 28(20):7060. [11] Zhang H, Zheng W, Feng X, et al. Nrf2-ARE signaling acts as master pathway for the cellular antioxidant activity of fisetin[J]. Molecules, 2019, 24(4):708. [12] AL-Khayri J M, Sahana G R, Nagella P, et al. Flavonoids as potential anti-inflammatory molecules: a review[J]. Molecules, 2022, 27(9):2901. [13] Shan S, Shen Z, Zhang C, et al. Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation[J]. Biochem Pharmacol, 2019, 169: 113643. [14] Malla A M, Dar B A, Isaev A B, et al. Flavonoids: a reservoir of drugs from nature[J]. Mini Rev Med Chem, 2023, 23(7): 772-786. [15] 陈玲, 龚先琼. 中药单体减轻对乙酰氨基酚诱导肝损伤的研究[J]. 医学信息, 2021, 34(15): 1-4. [16] Chariyakornkul A, Juengwiroj W, Ruangsuriya J, et al. Antioxidant extract from cleistocalyx nervosum var. paniala pulp ameliorates acetaminophen-induced acute hepatotoxicity in rats[J]. Molecules, 2022, 27(2):553. [17] 乞振兰, 王梓, 李伟, 等. 人参果花青素对对乙酰氨基酚致小鼠肝损伤的保护作用[J]. 中草药, 2017, 48(13): 2704-2710. [18] Choi J H, Choi C Y, Lee K J, et al. Hepatoprotective effects of an anthocyanin fraction from purple-fleshed sweet potato against acetaminophen-induced liver damage in mice[J]. J Med Food, 2009, 12(2): 320-326. [19] Seo M, Kim H, Lee J H, et al. Pelargonidin ameliorates acetaminophen-induced hepatotoxicity in mice by inhibiting the ROS-induced inflammatory apoptotic response[J]. Biochimie, 2020, 168: 10-16. [20] Wang W, Li J, Wang Z, et al. Oral hepatoprotective ability evaluation of purple sweet potato anthocyanins on acute and chronic chemical liver injuries[J]. Cell Biochem Biophys, 2014, 69(3): 539-548. [21] Deng X, Li Y, Li X, et al. Paeoniflorin protects against acetaminophen-induced liver injury in mice via JNK signaling pathway[J]. Molecules, 2022, 27(23):8534. [22] Yang J, Wang X Y, Xue J, et al. Protective effect of apigenin on mouse acute liver injury induced by acetaminophen is associated with increment of hepatic glutathione reductase activity[J]. Food Funct, 2013, 4(6): 939-943. [23] Zhang J, Liang X, Li J, et al. Apigenin attenuates acetaminophen-induced hepatotoxicity by activating AMP-activated protein kinase/carnitine palmitoyltransferase I pathway[J]. Front Pharmacol, 2020, 11(1858):549057. [24] Li H, Weng Q, Gong S, et al. Kaempferol prevents acetaminophen-induced liver injury by suppressing hepatocyte ferroptosis via Nrf2 pathway activation[J]. Food Funct, 2023, 14(4): 1884-1896. [25] Binmowyna M N, Alfaris N A. Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1[J]. Pharm Biol, 2021, 59(1): 146-156. [26] Tsai M S, Chien C C, Lin T H, et al. Galangin prevents acute hepatorenal toxicity in novel propacetamol-induced acetaminophen-overdosed mice[J]. J Med Food, 2015, 18(11): 1187-1197. [27] Mohammadi A, Kazemi S, Molayousefian I, et al. Galangin nanoparticles protect acetaminophen-induced liver injury: a biochemical and histopathological approach[J]. Evid Based Complement Alternat Med, 2022, 2022: 4619064. [28] Wan J, Kuang G, Zhang L, et al. Hesperetin attenuated acetaminophen-induced hepatotoxicity by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via upregulation of heme oxygenase-1 expression[J]. Int Immunopharmacol, 2020, 83: 106435. [29] Eldin D N, Fahim H I, Ahmed H Y, et al. Preventive effects of mandarin fruit peel hydroethanolic extract, hesperidin, and quercetin on acetaminophen-induced hepatonephrotoxicity in wistar rats[J]. Oxid Med Cell Longev, 2022, 2022: 7065845. [30] Saidurrahman M, Mujahid M, Siddiqui M A, et al. Evaluation of hepatoprotective activity of ethanolic extract of Pterocarpus marsupium Roxb. leaves against paracetamol-induced liver damage via reduction of oxidative stress[J]. Phytomedicine Plus, 2022, 2(3): 100311. [31] Liu L, Zhou L, Wang C, et al. Novel pterostilbene-loaded pro-phytomicelles: preclinical pharmacokinetics, distribution, and treatment efficacy against acetaminophen-induced liver injury[J]. Food Funct, 2022, 13(19): 9868-9877. [32] Thakur K, Zhu Y Y, Feng J Y, et al. Morin as an imminent functional food ingredient: an update on its enhanced efficacy in the treatment and prevention of metabolic syndromes[J]. Food Funct, 2020, 11(10): 8424-8443. [33] EL Sayed NF, Abdallah DM, Awad AS, et al. Novel peripheral role of Nurr-1/GDNF/AKT trajectory in carvedilol and/or morin hydrate hepatoprotective effect in a model of hepatic ischemia/reperfusion[J]. Life Sci, 2021, 273: 119235. [34] Lu R, Yu R J, Yang C, et al. Evaluation of the hepatoprotective effect of naringenin loaded nanoparticles against acetaminophen overdose toxicity[J]. Drug Deliv, 2022, 29(1): 3256-3269. [35] Wu Q, Yu P, Bi Y, et al. Naringin regulates mitochondrial dynamics to protect against acetaminophen-induced hepatotoxicity by activating the AMPK/Nrf2 signaling pathway in vitro[J]. Braz J Med Biol Res, 2022, 55: e12040. [36] Zhai X, Dai T, Chi Z, et al. Naringin alleviates acetaminophen-induced acute liver injury by activating Nrf2 via CHAC2 upregulation[J]. Environ Toxicol, 2022, 37(6): 1332-1342. [37] 郑艺, 李慧, 吴进, 等. 地肤子总黄酮对对乙酰氨基酚所致小鼠急性肝损伤的保护作用[J]. 中国医药导报, 2022, 19(01): 23-26. [38] 李阳杰, 姜亚玲, 刘秋伟, 等. 槲皮素衍生物的生物活性研究进展[J]. 中国药学杂志, 2021, 56(03): 175-80. [39] Gilani A H, Janbaz K H, Shah B H. Quercetin exhibits hepatoprotective activity in rats[J]. Biochem Soc Trans, 1997, 25(4): S619. [40] AL Humayed S, AL-Ani B, EL Karib A O, et al. Suppression of acetaminophen-induced hepatocyte ultrastructural alterations in rats using a combination of resveratrol and quercetin[J]. Ultrastruct Pathol, 2019, 43(4-5): 162-169. [41] Dallak M, Dawood A F, Haidara M A, et al. Suppression of glomerular damage and apoptosis and biomarkers of acute kidney injury induced by acetaminophen toxicity using a combination of resveratrol and quercetin[J]. Drug Chem Toxicol, 2022, 45(1): 1-7. [42] Yousef M I, Omar S A, EL-Guendi M I, et al. Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat[J]. Food Chem Toxicol, 2010, 48(11): 3246-3261. [43] Ji L L, Sheng Y C, Zheng Z Y, et al. The involvement of p62-Keap1-Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity[J]. Free Radic Biol Med, 2015, 85: 12-23. [44] Hu C, Chen Y, Cao Y, et al. Metabolomics analysis reveals the protective effect of quercetin-3-O-galactoside (Hyperoside) on liver injury in mice induced by acetaminophen[J]. J Food Biochem, 2020: e13420. [45] Tai M, Zhang J, Song S, et al. Protective effects of luteolin against acetaminophen-induced acute liver failure in mouse[J]. Int Immunopharmacol, 2015, 27(1): 164-170. [46] Song K, Zhou L, Wang C, et al. Novel luteolin@pro-phytomicelles: In vitro characterization and in vivo evaluation of protection against drug-induced hepatotoxicity[J]. Chem Biol Interact, 2022, 365: 110095. [47] Shi L, Hao Z, Zhang S, et al. Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: The involvement of ERK1/2 and PKC[J]. Biochem Pharmacol, 2018, 150: 9-23. [48] Zhou H C, Wang H, Shi K, et al. Hepatoprotective effect of baicalein against acetaminophen-induced acute liver injury in mice[J]. Molecules, 2018, 24(1):131. [49] Zeng Y, Wu R, Wang F, et al. Liberation of daidzein by gut microbial beta-galactosidase suppresses acetaminophen-induced hepatotoxicity in mice[J]. Cell Host Microbe, 2023, 31(5): 766-780 e7. |