[1] Lazarus J V, Mark H E, Villota-Rivas M, et al. The global NAFLD policy review and preparedness index: are countries ready to address this silent public health challenge?[J] J Hepatol, 2022, 76(4):771-780. [2] Powell E E, Wong V W S, Rinella M. Non-alcoholic fatty liver disease[J]. The Lancet, 2021, 397(10290):2212-2224. [3] Eslam M, Sanyal A J, George J, et al. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7):1999-2014.e1991. [4] 范建高,南月敏,魏来,等. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 中华肝脏病杂志, 2024, 32(5):418-434. [5] 刘天会. 细胞器之间相互作用在非酒精性脂肪性肝病发生发展中的作用[J]. 临床肝胆病杂志, 2022, 39(1):181-187. [6] Benador I Y, Veliova M, Liesa M, et al. Mitochondria bound to lipid droplets: where mitochondrial dynamics regulate lipid storage and utilization[J]. Cell Metab, 2019, 29(4):827-835. [7] Benador I Y, Veliova M, Mahdaviani K, et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion[J]. Cell Metab, 2018, 27(4):869-885.e6. [8] Sun X, Yu Q, Qi Y, et al. Peridroplet mitochondria are associated with the severity of MASLD and the prevention of MASLD by diethyldithiocarbamate[J]. J Lipid Res, 2024, 65(8):100590. [9] Liu T, Wang P, Cong M, et al. Diethyldithiocarbamate, an anti-abuse drug, alleviates steatohepatitis and fibrosis in rodents through modulating lipid metabolism and oxidative stress[J]. Br J Pharmacol, 2018, 175(24):4480-4495. [10] Liu T, Wang P, Cong M, et al. Matrix metalloproteinase-1 induction by diethyldithiocarbamate is regulated via Akt and ERK/miR222/ETS-1 pathways in hepatic stellate cells[J]. Biosci Rep, 2016, 36(4): e00371. [11] Liu T, Wang P, Cong M, et al. The CYP2E1 inhibitor DDC up-regulates MMP-1 expression in hepatic stellate cells via an ERK1/2- and Akt-dependent mechanism[J]. Biosci Rep, 2013, 33(3):e00041 [12] Sun X, Yu Q, Kang B, et al. Diethyldithiocarbamate inhibits the activation of hepatic stellate cells via PPARalpha/FABP1 in mice with non-alcoholic steatohepatitis[J]. Biochem Biophys Res Commun, 2023, 641:192-199. [13] Venkatesan N, Doskey L C, Malhi H. The role of endoplasmic reticulum in lipotoxicity during metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis[J]. Am J Pathol, 2023, 193(12):1887-1899. [14] Chandrasekaran P, Weiskirchen S, Weiskirchen R. Perilipins: a family of five fat-droplet storing proteins that play a significant role in fat homeostasis[J]. J Cell Biochem, 2024, 125(6):e30579. [15] Wang C, Zhao Y, Gao X, et al. Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis[J]. Hepatology, 2015, 61(3):870-882. [16] Zhang J, Gao X, Yuan Y, et al. Perilipin 5 alleviates HCV NS5A-induced lipotoxic injuries in liver[J]. Lipids Health Dis, 2019, 18(1):87. [17] Gemmink A, Daemen S, Kuijpers H J H, et al. Super-resolution microscopy localizes perilipin 5 at lipid droplet-mitochondria interaction sites and at lipid droplets juxtaposing to perilipin 2[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2018, 1863(11):1423-1432. [18] Tan Y, Jin Y, Wang Q, et al. Perilipin 5 protects against cellular oxidative stress by enhancing mitochondrial function in hepG2 cells[J]. Cells, 2019, 8(10):1241. |