[1] Adlat S, Vázquez Salgado A M, Lee M, et al. Emerging and potential use of CRISPR in human liver disease[J]. Hepatology, 2025, 82(1): 232-253. [2] Hess G T, Tycko J, Yao D, et al. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes[J]. Mol Cell, 2017, 68(1): 26-43. [3] Anzalone A V, Randolph P B, Davis J R, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149-157. [4] Guo C, Ma X, Gao F, et al. Off-target effects in CRISPR/Cas9 gene editing[J]. Front Bioeng Biotechnol, 2023, 11: 1143157. [5] Quadros R M, Miura H, Harms D W, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins[J]. Genome Biol, 2017, 18(1): 92. [6] Tian C, Min X, Zhao Y, et al. MRG15 aggravates non-alcoholic steatohepatitis progression by regulating the mitochondrial proteolytic degradation of TUFM[J]. J Hepatol, 2022, 77(6): 1491-1503. [7] Xie D, Zhao H, Lu J, et al. High uric acid induces liver fat accumulation via ROS/JNK/AP-1 signaling[J]. Am J Physiol-Endocrinol Metab, 2021, 320(6): E1032-E1043. [8] Molina-Sánchez P, Ruiz De Galarreta M, Yao M A, et al. Cooperation between distinct cancer driver genes underlies intertumor heterogeneity in hepatocellular carcinoma[J]. Gastroenterology, 2020, 159(6): 2203-2220.e14. [9] Boyault S, Rickman D S, De Reyniès A, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets[J]. Hepatology, 2007, 45(1): 42-52. [10] Hyrina A, Jones C, Chen D, et al. A genome-wide CRISPR screen identifies ZCCHC14 as a host factor required for hepatitis B surface antigen production[J]. Cell Rep, 2019, 29(10): 2970-2978.e6. [11] Yu S, Ericson M, Fanjul A, et al. Genome-wide CRISPR screening to identify drivers of TGF-β-induced liver fibrosis in human hepatic stellate cells[J]. ACS Chem Biol, 2022, 17(4): 918-929. [12] Xu C, Qi X, Du X, et al. PiggyBac mediates efficient in vivo CRISPR library screening for tumorigenesis in mice[J]. Proc Natl Acad Sci USA, 2017, 114(4): 722-727. [13] Saito Y, Yin D, Kubota N, et al. A therapeutically targetable TAZ-TEAD2 pathway drives the growth of hepatocellular carcinoma via ANLN and KIF23[J]. Gastroenterology, 2023, 164(7): 1279-1292. [14] Perez-Pinera P, Kocak D D, Vockley C M, et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors[J]. Nat Methods, 2013, 10(10): 973-976. [15] Li J, Li R, Bai X, et al. Direct reprogramming of fibroblasts into functional hepatocytes via CRISPRa activation of endogenous and[J]. Chin Med J, 2024, 137(11): 1351-1359. [16] Wei Y, Wang Y G, Jia Y, et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes[J]. Science, 2021, 371(6532): eabb1625. [17] Porto E M, Komor A C. In the business of base editors: Evolution from bench to bedside[J]. PLoS Biol, 2023, 21(4): e3002071. [18] Martinez M G, Combe E, Inchauspe A, et al. CRISPR-Cas9 targeting of hepatitis B virus covalently closed circular DNA generates transcriptionally active episomal variants[J]. mBio, 2022, 13(2): e02888-21. [19] Kohut T J, Gilbert M A, Loomes K M. Alagille syndrome: a focused review on clinical features, genetics, and treatment[J]. Semin Liver Dis, 2021, 41(04): 525-537. [20] Li H, Malani N, Hamilton S R, et al. Assessing the potential for AAV vector genotoxicity in a murine model[J]. Blood, 2011, 117(12): 3311-3319. [21] Wang J Y, Doudna J A. CRISPR technology: a decade of genome editing is only the beginning[J]. Science, 2023, 379(6629): eadd8643. |