[1] Zhu J Z, Dai Y N, Wang Y M, et al. Prevalence of nonalcoholic fatty liver disease and economy[J]. Dig Dis Sci,2015,60(11):3194-3202. [2] 杨晨,余上海,徐飞鹏,等.磁共振质子密度脂肪分数(MRI-PDFF)在肝脂肪定量中的应用[J].临床肝胆病杂志,2024,40(3):600-605. [3] Tamaki N, Ajmera V, Loomba R. Non-invasive methods for imaging hepatic steatosis and their clinical importance in NAFLD[J]. Nat Rev Endocrinol,2022,18(1):55-66. [4] Nogami A, Yoneda M, Iwaki M, et al. Non-invasive imaging biomarkers for liver steatosis in non-alcoholic fatty liver disease: present and future[J]. Clin Mol Hepatol,2023,29:S123-S135. [5] Yin M, Liu L, Gao J, et al. Deep learning for pancreatic diseases based on endoscopic ultrasound: a systematic review[J]. Int J Med Inform,2023,174:105044. [6] 中华医学会肝病学分会脂肪肝和酒精性肝病学组,中国医师协会脂肪性肝病专家委员会.非酒精性脂肪性肝病防治指南(2018更新版)[J].中华肝脏病杂志,2018,26(3):195-203. [7] Hong C W, Marsh A, Wolfson T, et al. Reader agreement and accuracy of ultrasound features for hepatic steatosis[J]. Abdom Radiol (NY),2019,44(1):54-64. [8] Castera L, Friedrich-Rust M, Loomba R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease[J]. Gastroenterology,2019,156(5):1264-1281. [9] Permutt Z, Le T A, Peterson M R, Seki E, et al. Correlation between liver histology and novel magnetic resonance imaging in adult patients with non-alcoholic fatty liver disease-MRI accurately quantifies hepatic steatosis in NAFLD[J]. Aliment Pharmacol Ther,2012,36(1):22-29. [10] Wang Y, Hong Y, Wang Y, et al. Automated multimodal machine learning for esophageal variceal bleeding prediction based on endoscopy and structured data[J]. J Digit Imaging,2023,36(1):326-338. [11] 高静雯,林嘉希,刘璐,等.基于深度学习二次预训练建立Barrett食管内镜图片分类模型的研究[J].中国数字医学,2022,17(10):54-58. [12] Tapper E B, Lok A S F. Use of liver imaging and biopsy in clinical practice[J]. N Engl J Med,2017,377(23):2296-2297. [13] Vianna P, Calce S I, Boustros P, et al. Comparison of radiologists and deep learning for US grading of hepatic steatosis[J]. Radiology,2023,309(1):e230659. [14] He Y, Lin J, Zhu S, et al. Deep learning in the radiologic diagnosis of osteoporosis: a literature review[J]. J Int Med Res,2024,52(4):3000605241244754. [15] Byra M, Styczynski G, Szmigielski C, et al. Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images[J]. Int J Comput Assist Radiol Surg,2018,13(12):1895-1903. [16] Reddy D, Bharath R, Rajalakshmi P. A novel computer-aided diagnosis framework using deep learning for classification of fatty liver disease in ultrasound imaging[C]. IEEE,2018,pp,1-5. [17] Byra M, Han A, Boehringer A S, Zhang Y N, et al. Liver fat assessment in multiview sonography using transfer learning with convolutional neural networks[J]. J Ultrasound Med,2022,41(1):175-184. |