[1] Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. AmJ Pathol,2010, 176:2-13. [2] Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology, 2006, 43:S45-S53. [3] Michalopoulos GK, DeFrances MC. Liver regeneration.Science,1997, 276:60-66. [4] Gilgenkrantz H, Tordjmann T. Bile acids and FGF receptors: orchestrators of optimal liver regeneration. Gut, 2015, 64:1351-1352. [5] Fan M, Wang X, Xu G, et al. Bile acid signaling and liver regeneration. Biochim Biophys Acta, 2015, 1849:196-200. [6] Huang W, Ma K, Zhang J, et al. Nuclear receptordependent bile acid signaling is required for normal liver regeneration. Science, 2006, 312:233-236. [7] Modica S, Gadaleta RM, Moschetta A. Deciphering the nuclear bile acid receptor FXR paradigm. Nucl Recept Signal,2010, 8:e005. [8] Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab, 2005, 2:217-225. [9] Modica S, Petruzzelli M, Bellafante E, et al. Selective activation of nuclear bile acid receptor FXR in the intestine protects mice against cholestasis. Gastroenterology2012,142,355-365.e1-4. [10] Kliewer SA, Mangelsdorf DJ. Bile Acids as Hormones:The FXR-FGF15/19 pathway. Dig Dis, 2015, 33:327-331. [11] Uriarte I, Fernández-Barrena MG, Monte MJ, et al. Identification of fibroblast growth factor 15 as a novel mediator of liver regeneration and its application in theprevention of post-resection liver failure in mice. Gut, 201, 62:899-910. [12] Padrissa-Altés S, Bachofner M, Bogorad RL, et al. Control of hepatocyte proliferation and survival by Fgf receptors is essential for liver regeneration in mice. Gut, 2015, 64: 1444-1453. [13] Schaap FG, van der Gaag NA, Gouma DJ, et al. High expression of the bile salt-homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis. Hepatology, 2009, 49:1228-1235. [14] Naugler WE, Tarlow BD, Fedorov LM, et al. Fibroblast growth factor signaling controls liver size in mice with humanized livers. Gastroenterology, 2015, 149:728-740. [15] Grompe M, Strom S. Mice with human livers. Gastroenterology, 2013,145:1209-1214. [16] Ellis EC, Nauglers WE, Parini P, et al. Mice with chimeric livers are an improved model for human lipoprotein metabolism. PLoS ONE, 2013, 8:e78550. [17] Avruch J, Zhou D, Fitamant J, et al. Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development. Br J Cancer, 2011, 104:24-32. [18] Moroishi T, Hansen CG, Guan K-L. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer, 2015, 15:73-79. [19] Anakk S, Bhosale M, Schmidt VA, et al. Bile acids activate YAP to promote liver carcinogenesis. Cell Rep, 2013,5:1060-1069. [20] Degirolamo C, Modica S, Vacca M, et al. Prevention of spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice by intestinal-specific farnesoid X receptor reactivation. Hepatology,2015, 61:161-170. |