[1] 管海涛, 赵金丽, Xi Pengcheng. 基于deep CNN的Faster R-CNN在肝癌肿瘤超声图像中的初步应用. 中国超声医学杂志, 2020, 36:218-220. [2] Yasaka K, Akai H, Kunimatsu A, et al. Deep learning with convolutional neural network in radiology. Jpn J Radiol, 2018,36:257-272. [3] Bousabarah K, Letzen B, Tefera J, et al. Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning. Abdom Radiol (NY), 2021,46:216-225. [4] Jiang YQ, Cao SE, Cao S, et al. Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning. J Cancer Res Clin Oncol, 2021,147:821-833. [5] Actor JA, Fuentes DT, Rivière B. Identification of kernels in a convolutional neural network: connections between level set equation and deep learning for image segmentation. Proc SPIE Int Soc Opt Eng,2020,11313:1131317. [6] Brehar R, Mitrea DA, Vancea F, et al. Comparison of deep-learning and conventional machine-learning methods for the automatic recognition of the hepatocellular carcinoma areas from ultrasound Images. Sensors (Basel), 2020,20:3085. [7] 王冰洁, 张佳光, 杨婧. 血清标志物在肝癌早期诊断中的研究进展. 海南医学, 2020,31:3101-3104. [8] Li S, Jiang H, Pang W. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading. Comput Biol Med, 2017,84:156-167. [9] Li X, Chen H, Qi X, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging,2018,37:2663-2674. |