[1] Cheng M L, Nakib D, Perciani C T, et al. The immune niche of the liver[J]. Clin Sci (Lond), 2021, 135(20):2445-2466. [2] Zhao Y, Niu C, Cui J. Gamma-delta (γδ) T cells: friend or foe in cancer development?[J]. J Transl Med, 2018, 16(1):3. [3] Chen D, Guo Y, Jiang J, et al. γδ T cell exhaustion: Opportunities for intervention[J]. J Leukoc Biol, 2022, 112(6):1669-1676. [4] Lee D, Rosenthal C J, Penn N E, et al. Human γδ T Cell Subsets and Their Clinical Applications for Cancer Immunotherapy[J]. Cancers (Basel), 2022, 14(12):3005. [5] Rimailho L, Faria C, Domagala M, et al. γδ T cells in immunotherapies for B-cell malignancies[J]. Front Immunol, 2023, 14:1200003. [6] Caron J, Ridgley L A, Bodman-Smith M. How to Train Your Dragon: Harnessing Gamma Delta T Cells Antiviral Functions and Trained Immunity in a Pandemic Era[J]. Front Immunol, 2021, 12:666983. [7] Organization W H. Global hepatitis report 2017[M]. World Health Organization, 2017. [8] Jia Z H, Li Y Y, Wang J Y, et al. Activated γδ T cells exhibit cytotoxicity and the capacity for viral clearance in patients with acute hepatitis B[J]. Clin Immunol, 2019, 202:40-48. [9] Chang L, Wang L, Ling N, et al. Increase in liver γδ T cells with concurrent augmentation of IFN-β production during the early stages of a mouse model of acute experimental hepatitis B virus infection[J]. Exp Ther Med, 2020, 19(1):67-78. [10] Wang Y, Guan Y, Hu Y, et al. Murine CXCR3(+)CXCR6(+)γδ T Cells Reside in the Liver and Provide Protection Against HBV Infection[J]. Front Immunol, 2021, 12:757379. [11] Wu D, Yan W M, Wang H W, et al. γδ T Cells Contribute to the Outcome of Murine Fulminant Viral Hepatitis via Effector Cytokines TNF-α and IFN-γ[J]. Curr Med Sci, 2018, 38(4):648-655. [12] Gogoi D, Borkakoty B, Biswas D, et al. Characteristics of Circulatory γδ T cells in Patients with Symptomatic Chronic Hepatitis B Infection[J]. Viral Immunol, 2021, 34(7):483-490. [13] Cimini E, Bordoni V, Sacchi A, et al. Intrahepatic Vγ9Vδ2 T-cells from HCV-infected patients show an exhausted phenotype but can inhibit HCV replication[J]. Virus Res, 2018, 243:31-35. [14] Yin W, Tong S, Zhang Q, et al. Functional dichotomy of Vδ2 γδ T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-γ production[J]. Sci Rep, 2016, 6:26296. [15] Ghosh A, Mondal R K, Romani S, et al. Persistent gamma delta T-cell dysfunction in chronic HCV infection despite direct-acting antiviral therapy induced cure[J]. J Viral Hepat, 2019, 26(9):1105-1116. [16] Ju T, Jiang D, Zhong C, et al. Characteristics of circulating immune cells in HBV-related acute-on-chronic liver failure following artificial liver treatment[J]. BMC Immunol, 2023, 24(1):47. [17] Hua F, Wang L, Rong X, et al. Elevation of Vδ1 T cells in peripheral blood and livers of patients with primary biliary cholangitis[J]. Clin Exp Immunol, 2016, 186(3):347-355. [18] Jang J S, Juran B D, Cunningham K Y, et al. Single-cell mass cytometry on peripheral blood identifies immune cell subsets associated with primary biliary cholangitis[J]. Sci Rep, 2020, 10(1):12584. [19] Chen S, Lv T, Sun G, et al. Reciprocal alterations in circulating and hepatic gamma-delta T cells in patients with primary biliary cholangitis[J]. Hepatol Int, 2022, 16(1):195-206. [20] He Q, Lu Y, Tian W, et al. TOX deficiency facilitates the differentiation of IL-17A-producing γδ T cells to drive autoimmune hepatitis[J]. Cell Mol Immunol, 2022, 19(10):1102-1116. [21] Ujiie H, Shevach E M. γδ T Cells Protect the Liver and Lungs of Mice from Autoimmunity Induced by Scurfy Lymphocytes[J]. J Immunol, 2016, 196(4):1517-28. [22] Li C, Du X, Shen Z, et al. The Critical and Diverse Roles of CD4(-)CD8(-) Double Negative T Cells in Nonalcoholic Fatty Liver Disease[J]. Cell Mol Gastroenterol Hepatol, 2022, 13(6):1805-1827. [23] Han Y, Ling Q, Wu L, et al. Akkermansia muciniphila inhibits nonalcoholic steatohepatitis by orchestrating TLR2-activated γδT17 cell and macrophage polarization[J]. Gut Microbes, 2023, 15(1):2221485. [24] Li F, Hao X, Chen Y, et al. The microbiota maintain homeostasis of liver-resident γδ T-17 cells in a lipid antigen/CD1d-dependent manner[J]. Nat Commun, 2017, 7:13839. [25] Torres-Hernandez A, Wang W, Nikiforov Y, et al. γδ T Cells Promote Steatohepatitis by Orchestrating Innate and Adaptive Immune Programming[J]. Hepatology, 2020, 71(2):477-494. [26] Pei Q, Yi Q, Tang L. Liver Fibrosis Resolution: From Molecular Mechanisms to Therapeutic Opportunities[J]. Int J Mol Sci, 2023, 24(11). [27] Tedesco D, Thapa M, Chin C Y, et al. Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic γδ T-Cell Receptor-Positive Cells and Pathogenesis of Cholestatic Liver Disease[J]. Gastroenterology, 2018, 154(8):2178-2193. [28] Zheng L, Hu Y, Wang Y, et al. Recruitment of Neutrophils Mediated by Vγ2 γδ T Cells Deteriorates Liver Fibrosis Induced by Schistosoma japonicum Infection in C57BL/6 Mice[J]. Infect Immun, 2017, 85(8):e01020-16. [29] Sun L, Gong W, Shen Y, et al. IL-17A-producing γδ T cells promote liver pathology in acute murine schistosomiasis[J]. Parasit Vectors, 2020, 13(1):334. [30] Liu M, Hu Y, Yuan Y, et al. γδ T Cells Suppress Liver Fibrosis via Strong Cytolysis and Enhanced NK Cell-Mediated Cytotoxicity Against Hepatic Stellate Cells[J]. Front Immunol, 2019, 10:477. [31] Liu Q, Yang Q, Wu Z, et al. IL-1β-activated mTORC2 promotes accumulation of IFN-γ(+) γδ T cells by upregulating CXCR3 to restrict hepatic fibrosis[J]. Cell Death Dis, 2022, 13(4):289. [32] Yang T, Zhang L, He S, et al. Study on the effect of γδ T cells expanded in vitro to kill hepatocellular carcinoma cells[J]. J Cancer Res Ther, 2023, 19(1):45-56. [33] Zakeri N, Hall A, Swadling L, et al. Characterisation and induction of tissue-resident gamma delta T-cells to target hepatocellular carcinoma[J]. Nat Commun, 2022, 13(1):1372. [34] Xu Y, Xiang Z, Alnaggar M, et al. Allogeneic Vγ9Vδ2 T-cell immunotherapy exhibits promising clinical safety and prolongs the survival of patients with late-stage lung or liver cancer[J]. Cell Mol Immunol, 2021, 18(2):427-439. [35] Zhang T, Chen J, Niu L, et al. Clinical Safety and Efficacy of Locoregional Therapy Combined with Adoptive Transfer of Allogeneic γδ T Cells for Advanced Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma[J]. J Vasc Interv Radiol, 2022, 33(1):19-27.e3. [36] Ren H, Liu X, Xu Q, et al. Interleukin-35 expression promotes hepatocellular carcinogenesis by inducing γδ T-cell exhaustion[J]. Genomics, 2023, 115(3):110639. [37] He W, Hu Y, Chen D, et al. Hepatocellular carcinoma-infiltrating γδ T cells are functionally defected and allogenic Vδ2(+) γδ T cell can be a promising complement[J]. Clin Transl Med, 2022, 12(4):e800. [38] Sun R, Li J, Lin X, et al. Peripheral immune characteristics of hepatitis B virus-related hepatocellular carcinoma[J]. Front Immunol, 2023, 14:1079495. [39] Jiang H, Yang Z, Song Z, et al. γδ T cells in hepatocellular carcinoma patients present cytotoxic activity but are reduced in potency due to IL-2 and IL-21 pathways[J]. Int Immunopharmacol, 2019, 70:167-173. |