[1] 周青, 陆峰. 基于金纳米颗粒为基底的表面增强拉曼光谱快速鉴别人肝癌细胞与正常肝细胞[J]. 现代肿瘤医学,2023,31:423-427. [2] Zhang C H, Cheng Y, Zhang S, et al. Changing epidemiology of hepatocellular carcinoma in Asia[J]. Liver Int,2022,42:2029-2041. [3] 杨晓玲, 赖丽金, 谭桂兰. 千金藤素调控肝癌细胞HepG2增殖和凋亡的实验研究[J]. 安徽医药,2023,27:64-68. [4] Garcia-Lezana T, Lopez-Canovas J L, Villanueva A. Signaling pathways in hepatocellular carcinoma[J]. Adv Cancer Res,2021,149:63-101. [5] Bekric D, Ocker M, Mayr C, et al. Ferroptosis in Hepatocellular Carcinoma: Mechanisms, Drug Targets and Approaches to Clinical Translation[J]. Cancers (Basel),2022,14. [6] Nie J, Lin B, Zhou M, et al. Role of ferroptosis in hepatocellular carcinoma[J]. J Cancer Res Clin Oncol,2018,144:2329-2337. [7] Zhou Y, Duan S, Zhou Y, et al. Sulfiredoxin-1 attenuates oxidative stress via Nrf2/ARE pathway and 2-Cys Prdxs after oxygen-glucose deprivation in astrocytes[J]. J Mol Neurosci,2015,55:941-950. [8] Lan W, Lin J, Liu W, et al. Sulfiredoxin-1 protects spinal cord neurons against oxidative stress in the oxygen-glucose deprivation/reoxygenation model through the bax/cytochrome c/caspase 3 apoptosis pathway[J]. Neurosci Lett,2021,744:135615. [9] Zhu F, Shao J, Tian Y, et al. Sulfiredoxin-1 protects retinal ganglion cells from high glucose-induced oxidative stress and inflammatory injury by potentiating Nrf2 signaling via the Akt/GSK-3β pathway[J]. Int Immunopharmacol,2021,101:108221. [10] Lv X, Yu H, Zhang Q, et al. SRXN1 stimulates hepatocellular carcinoma tumorigenesis and metastasis through modulating ROS/p65/BTG2 signalling[J]. J Cell Mol Med,2020,24:10714-10729. [11] Qi W, Li Z, Xia L, et al. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells[J]. Sci Rep,2019,9:16185. [12] Wang Z, Li Z, Ye Y, et al. Oxidative Stress and Liver Cancer: Etiology and Therapeutic Targets[J]. Oxid Med Cell Longev,2016,2016:7891574. [13] Luangmonkong T, Suriguga S, Mutsaers H A M, et al. Targeting Oxidative Stress for the Treatment of Liver Fibrosis[J]. Rev Physiol Biochem Pharmacol,2018,175:71-102. [14] Sosa V, Moliné T, Somoza R, et al. Oxidative stress and cancer: an overview[J]. Ageing Res Rev,2013,12: 376-390. [15] Ogunwobi O O, Harricharran T, Huaman J, et al. Mechanisms of hepatocellular carcinoma progression[J]. World J Gastroenterol,2019,25:2279-2293. [16] Lei K, Townsend D M, Tew K D. Protein cysteine sulfinic acid reductase (sulfiredoxin) as a regulator of cell proliferation and drug response[J]. Oncogene,2008,27:4877-4887. [17] Baek J Y, Han S H, Sung S H, et al. Sulfiredoxin protein is critical for redox balance and survival of cells exposed to low steady-state levels of H2O2[J]. J Biol Chem,2012,287:81-89. [18] Zhou Y, Zhou Y, Yu S, et al. Sulfiredoxin-1 exerts anti-apoptotic and neuroprotective effects against oxidative stress-induced injury in rat cortical astrocytes following exposure to oxygen-glucose deprivation and hydrogen peroxide[J]. Int J Mol Med,2015,36:43-52. [19] Rao Q W, Zhang S L, Guo M Z, et al. Sulfiredoxin-1 is a promising novel prognostic biomarker for hepatocellular carcinoma[J]. Cancer Med,2020,9:8318-8332. [20] Li Z J, Dai H Q, Huang X W, et al. Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma[J]. Acta Pharmacol Sin,2021,42:301-310. [21] Li H, Zhao J, Zhong X L, et al. CPLX2 Regulates Ferroptosis and Apoptosis Through NRF2 Pathway in Human Hepatocellular Carcinoma Cells[J]. Appl Biochem Biotechnol,2023,195:597-609. [22] Byun J K, Lee S, Kang G W, et al. Macropinocytosis is an alternative pathway of cysteine acquisition and mitigates sorafenib-induced ferroptosis in hepatocellular carcinoma[J]. J Exp Clin Cancer Res,2022,41:98. [23] Yang M, Wu X, Hu J, et al. COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma[J]. J Hepatol,2022,76:1138-1150. [24] Hino K, Yanatori I, Hara Y, et al. Iron and liver cancer: an inseparable connection[J]. Febs j,2022,289:7810-7829. [25] Guo Q, Li L, Hou S, et al. The Role of Iron in Cancer Progression[J]. Front Oncol,2021,11:778492. [26] Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell,2021,12:599-620. [27] Seibt T M, Proneth B, Conrad M. Role of GPX4 in ferroptosis and its pharmacological implication[J]. Free Radic Biol Med,2019,133:144-152. [28] Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis[J]. FEBS J,2022,289:7038-7050. [29] Yang Y, Zhu T, Wang X, et al. ACSL3 and ACSL4, Distinct Roles in Ferroptosis and Cancers[J].Cancers (Basel),2022,14. [30] Lee J Y, Kim W K, Bae K H, et al. Lipid Metabolism and Ferroptosis[J]. Biology (Basel),2021,10. |