[1] GBD 2016 Alcohol Collaborators.Alcohol use and burden for 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016 [J]. Lancet (London, England), 2018, 392(10152): 1015-1035. [2] Liangpunsakul S, Hbaer P, Mccaughan G W. Alcoholic liver disease in Asia, Europe, and North America [J]. Gastroenterology, 2016, 150(8): 1786-1797. [3] Tuyns A J, Pwquignot G. Greater risk of ascitic cirrhosis in females in relation to alcohol consumption [J]. International journal of epidemiology, 1984, 13(1): 53-57. [4] Corrao G, Bagnardi V, Zambon A, et al. Exploring the dose-response relationship between alcohol consumption and the risk of several alcohol-related conditions: a meta-analysis [J]. Addiction (Abingdon, England), 1999, 94(10): 1551-1573. [5] Kamper-Jørgensen M, Grønbaek M, Tolstrup J, et al. Alcohol and cirrhosis: dose--response or threshold effect? [J]. Journal of hepatology, 2004, 41(1): 25-30. [6] Schwantes-An T H, Darlay R, Mathurin P, et al. Genome-wide association study and meta-analysis on alcohol-associated liver cirrhosis identifies genetic risk factors [J]. Hepatology (Baltimore, Md), 2021, 73(5): 1920-1931. [7] Whitfield J B, Rahman K, Haber P S, et al. Brief report: genetics of alcoholic cirrhosis-GenomALC multinational study [J]. Alcoholism, clinical and experimental research, 2015, 39(5): 836-842. [8] Walters R K, Polimanti R, Johnson E C, et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders [J]. Nature neuroscience, 2018, 21(12): 1656-1669. [9] Buch S, Stickel F, Trépo E, et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis [J]. Nature genetics, 2015, 47(12): 1443-1448. [10] Visscher P M, Wray N R, Zhang Q, et al. 10 Years of GWAS discovery: biology, function, and translation [J]. American journal of human genetics, 2017, 101(1): 5-22. [11] Welter D, Macarthur J, Morales J, et al. The NHGRI GWAS catalog, a curated resource of SNP-trait associations [J]. Nucleic acids research, 2014, 42(Database issue): D1001-D1006. [12] Stickel F, Moreno C, Hampe J, et al. The genetics of alcohol dependence and alcohol-related liver disease [J]. Journal of hepatology, 2017, 66(1): 195-211. [13] Manolio T A, Collins F S, Cox N J, et al. Finding the missing heritability of complex diseases [J]. Nature, 2009, 461(7265): 747-753. [14] Choi S W, Mak T S, O'reilly P F. Tutorial: a guide to performing polygenic risk score analyses [J]. Nature protocols, 2020, 15(9): 2759-2772. [15] Wu M C, Lee S, Cai T, et al. Rare-variant association testing for sequencing data with the sequence kernel association test [J]. American journal of human genetics, 2011, 89(1): 82-93. [16] Lee S, Wu M C, Lin X. Optimal tests for rare variant effects in sequencing association studies [J]. Biostatistics (Oxford, England), 2012, 13(4): 762-775. [17] Whitfield J B, Schwantes-An T H, Darlay R, et al. A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers [J]. Journal of hepatology, 2022, 76(2): 275-282. [18] Torkamani A, Wineinger N E, Topol E J. The personal and clinical utility of polygenic risk scores [J]. Nature reviews Genetics, 2018, 19(9): 581-590. [19] Morris A P, Zeggini E. An evaluation of statistical approaches to rare variant analysis in genetic association studies [J]. Genetic epidemiology, 2010, 34(2): 188-193. [20] Morgenthaler S, Thilly W G. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST) [J]. Mutation research, 2007, 615(1-2): 28-56. [21] Verweij N, Haas M E, Nielsen J B, et al. Germline mutations in CIDEB and protection against liver disease [J]. The New England journal of medicine, 2022, 387(4): 332-344. [22] Abul-Husn N S, Cheng X, Li A H, et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease [J]. The New England journal of medicine, 2018, 378(12): 1096-1106. [23] Macartuhr D G, Manolio T A, Dimmock D P, et al. Guidelines for investigating causality of sequence variants in human disease [J]. Nature, 2014, 508(7497): 469-476. [24] Brooks P J, Goldman D, Li T K. Alleles of alcohol and acetaldehyde metabolism genes modulate susceptibility to oesophageal cancer from alcohol consumption [J]. Human genomics, 2009, 3(2): 103-105. [25] Bevilacqua L, Doly S, Kaprio J, et al. A population-specific HTR2B stop codon predisposes to severe impulsivity [J]. Nature, 2010, 468(7327): 1061-1066. [26] Goldman D, Oroszi G, Ducci F. The genetics of addictions: uncovering the genes [J]. Nature reviews Genetics, 2005, 6(7): 521-532. [27] Zhang H, Grant B F, Hodgkinson C A, et al. Strong and weak cross-inheritance of substance use disorders in a nationally representative sample [J]. Molecular psychiatry, 2022, 27(3): 1742-1453. [28] Edenberg H J, Mcclintick J N. Alcohol dehydrogenases, aldehyde dehydrogenases, and alcohol use disorders: a critical review [J]. Alcoholism, clinical and experimental research, 2018, 42(12): 2281-2297. [29] Sanchez-Roige S, Palmer A A, Fontanillas P, et al. Genome-wide association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two population-based cohorts [J]. The American journal of psychiatry, 2019, 176(2): 107-118. [30] Noden-Krichmar T M, Rotroff D, Schwantes-An T H, et al. Genomic approaches to explore susceptibility and pathogenesis of alcohol use disorder and alcohol-associated liver disease [J]. Hepatology (Baltimore, Md), 2025, 81(5): 1595-1606. [31] Chamorro A J, Torres J L, Mirón-Canelo J A, et al. Systematic review with meta-analysis: the I148M variant of patatin-like phospholipase domain-containing 3 gene (PNPLA3) is significantly associated with alcoholic liver cirrhosis [J]. Alimentary pharmacology & therapeutics, 2014, 40(6): 571-581. [32] Guyot E, Sutton A, Rufat P, et al. PNPLA3 rs738409, hepatocellular carcinoma occurrence and risk model prediction in patients with cirrhosis [J]. Journal of hepatology, 2013, 58(2): 312-318. [33] Nischalke H D, Berger C, Luda C, et al. The PNPLA3 rs738409 148M/M genotype is a risk factor for liver cancer in alcoholic cirrhosis but shows no or weak association in hepatitis C cirrhosis [J]. PloS one, 2011, 6(11): e27087. [34] Stickel F, Buch S, Nischalke H D, et al. Genetic variants in PNPLA3 and TM6SF2 predispose to the development of hepatocellular carcinoma in individuals with alcohol-related cirrhosis [J]. The American journal of gastroenterology, 2018, 113(10): 1475-1483. [35] Falleti E, Cussigh A, Cmet S, et al. PNPLA3 rs738409 and TM6SF2 rs58542926 variants increase the risk of hepatocellular carcinoma in alcoholic cirrhosis [J]. Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 2016, 48(1): 69-75. [36] Meroni M, Longo M, Fracanzani A L, et al. MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD [J]. EBioMedicine, 2020, 57: 102866. [37] Bridi L, Agrawal S, Tesfai K, et al. The impact of genetic risk on the prevalence of advanced fibrosis and cirrhosis in prospectively assessed patients with type 2 diabetes [J]. Alimentary pharmacology & therapeutics, 2024, 60(3): 369-377. |