Chinese Hepatolgy ›› 2025, Vol. 30 ›› Issue (10): 1430-1434.
• Review • Previous Articles Next Articles
Received:2024-11-21
Online:2025-10-31
Published:2025-12-16
| [1] Lazarus J V, Mark H E, Anstee Q M, et al. Advancing the global public health agenda for NAFLD: a consensus statement[J]. Nat Rev Gastroenterol Hepatol, 2022,19(1):60-78. [2] 中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)[J]. 中华肝脏病杂志, 2024,32(5):418-434. [3] Flessa C M, Nasiri-Ansari N, Kyrou I, et al. Genetic and diet-induced animal models for non-alcoholic fatty liver disease (NAFLD) research[J]. Int J Mol Sci, 2022,23(24):15791. [4] Denk H, Abuja P M, Zatloukal K. Animal models of NAFLD from the pathologist's point of view[J]. Biochim Biophys Acta Mol Basis Dis, 2019,1865(5):929-942. [5] Recena Aydos L, Aparecida do Amaral L, Serafim de Souza R, et al. Nonalcoholic fatty liver disease induced by high-fat diet in c57bl/6 models[J]. Nutrients, 2019,11(12):3067. [6] Hu S, Wang L, Yang D, et al. Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice[J]. Cell Metab, 2018,28(3):415-431. [7] Rahmadi M, Nurhan A D, Pratiwi E D, et al. The effect of various high-fat diet on liver histology in the development of NAFLD models in mice[J]. J Basic Clin Physiol Pharmacol, 2021,32(4):547-553. [8] Saxena R, Nassiri M, Yin X M, et al. Insights from a high-fat diet fed mouse model with a humanized liver[J]. Plos One, 2022,17(5):e268260. [9] Chen K, Ma J, Jia X, et al. Advancing the understanding of NAFLD to hepatocellular carcinoma development: from experimental models to humans[J]. Biochim Biophys Acta Rev Cancer, 2019,1871(1):117-125. [10] Zhi S, Congcong Z, Zhiling G, et al. Quantitative proteomics of HFD-induced fatty liver uncovers novel transcription factors of lipid metabolism[J]. Int J Biol Sci, 2022,18(8):3298-3312. [11] Li Y, Liu Y, Chen Z, et al. Protopanaxadiol ameliorates NAFLD by regulating hepatocyte lipid metabolism through AMPK/SIRT1 signaling pathway[J]. Biomed Pharmacother, 2023,160:114319. [12] Velázquez K T, Enos R T, Bader J E, et al. Prolonged high-fat-diet feeding promotes non-alcoholic fatty liver disease and alters gut microbiota in mice[J]. World J Hepatol, 2019,11(8):619-637. [13] Febbraio M A, Reibe S, Shalapour S, et al. Preclinical models for studying NASH-driven HCC: how useful are they?[J]. Cell Metab, 2019,29(1):18-26. [14] Lodge M, Dykes R, Kennedy A. Regulation of fructose metabolism in nonalcoholic fatty liver disease[J]. Biomolecules, 2024,14(7):845 [15] Herman M A, Birnbaum M J. Molecular aspects of fructose metabolism and metabolic disease[J]. Cell Metab, 2021,33(12):2329-2354. [16] Zhao S, Jang C, Liu J, et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate[J]. Nature, 2020,579(7800):586-591. [17] Silva-Veiga F M, Miranda C S, Martins F F, et al. Gut-liver axis modulation in fructose-fed mice: a role for PPAR-α and linagliptin[J]. J Endocrinol, 2020,247(1):11-24. [18] Oliveira-Cordeiro B, Fernandes-DA-Silva A, Silva-Veiga F M, et al. Long-term hepatic damage in high-fructose-fed c57bl/6 mice: hepatic fibrogenesis, endoplasmic reticulum stress markers, and fibrosis[J]. An Acad Bras Cienc, 2023,95(suppl 2):e20220784. [19] Im Y R, Hunter H, de Gracia Hahn D, et al. A systematic review of animal models of NAFLD finds high-fat, high-fructose diets most closely resemble human NAFLD[J]. Hepatology, 2021,74(4):1884-1901. [20] Chiang Morales M D, Chang C Y, Le V L, et al. High-fructose/high-fat diet downregulates the hepatic mitochondrial oxidative phosphorylation pathway in mice compared with high-fat diet alone[J]. Cells, 2022,11(21):3425 [21] Mock K, Lateef S, Benedito V A, et al. High-fructose corn syrup-55 consumption alters hepatic lipid metabolism and promotes triglyceride accumulation[J]. J Nutr Biochem, 2017,39:32-39. [22] Luo Y, Woodie L N, Graff E C, et al. Role of liquid fructose/sucrose in regulating the hepatic transcriptome in a high-fat western diet model of NAFLD[J]. J Nutr Biochem, 2023,112:109174. [23] Dong Y, Li W, Yin J. The intestinal-hepatic axis: a comprehensive review on fructose metabolism and its association with mortality and chronic metabolic diseases[J]. Crit Rev Food Sci Nutr, 2023:1-14. [24] Venkatesan N, Doskey L C, Malhi H. The role of endoplasmic reticulum in lipotoxicity during metabolic dysfunction-associated steatotic liver disease (MASLD) pathogenesis[J]. Am J Pathol, 2023,193(12):1887-1899. [25] Savard C, Tartaglione E V, Kuver R, et al. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis[J]. Hepatology, 2013,57(1):81-92. [26] Gao X, Lin X, Xin Y, et al. Dietary cholesterol drives the development of nonalcoholic steatohepatitis by altering gut microbiota mediated bile acid metabolism in high-fat diet fed mice[J]. J Nutr Biochem, 2023,117:109347. [27] Zhang X, Coker O O, Chu E S, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites[J]. Gut, 2021,70(4):761-774. [28] Zhang H, Léveillé M, Courty E, et al. Differences in metabolic and liver pathobiology induced by two dietary mouse models of nonalcoholic fatty liver disease[J]. Am J Physiol Endocrinol Metab, 2020,319(5):E863-E876. [29] Perakakis N, Joshi A, Peradze N, et al. The selective peroxisome proliferator-activated receptor gamma modulator chs-131 improves liver histopathology and metabolism in a mouse model of obesity and nonalcoholic steatohepatitis[J]. Hepatol Commun, 2020,4(9):1302-1315. [30] Kristiansen M N, Veidal S S, Rigbolt K T, et al. Obese diet-induced mouse models of nonalcoholic steatohepatitis-tracking disease by liver biopsy[J]. World J Hepatol, 2016,8(16):673-684. [31] Clapper J R, Hendricks M D, Gu G, et al. Diet-induced mouse model of fatty liver disease and nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment[J]. Am J Physiol Gastrointest Liver Physiol, 2013,305(7):G483-G495. [32] Gallage S, Avila J E B, Ramadori P, et al. A researcher's guide to preclinical mouse NASH models[J]. Nat Metab, 2022,4(12):1632-1649. [33] Boland M L, Oró D, Tølbøl K S, et al. Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: impact of dietary fat source[J]. World J Gastroenterol, 2019,25(33):4904-4920. [34] Madsen A N, Oró D, Madsen M R, et al. Development of hepatocellular carcinoma in the extended GAN diet-induced obese mouse model of nash with advanced fibrosis[J]. J Hepatol, 2022,77(S1):S389-S664. [35] Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications[J]. Biochem Pharmacol, 2022,200:115033. [36] Vallianou N G, Kounatidis D, Psallida S, et al. The interplay between dietary choline and cardiometabolic disorders: a review of current evidence[J]. Curr Nutr Rep, 2024,13(2):152-165. [37] Yu Y, Liu Y, An W, et al. STING-mediated inflammation in kupffer cells contributes to progression of nonalcoholic steatohepatitis[J]. J Clin Invest, 2019,129(2):546-555. [38] Liu M T, Zhang Y, Xiang C G, et al. Methionine-choline deficient diet deteriorates DSS-induced murine colitis through disturbance of gut microbes and infiltration of macrophages[J]. Acta Pharmacol Sin, 2024,45(9):1912-1925. [39] Alshawsh M A, Alsalahi A, Alshehade S A, et al. A comparison of the gene expression profiles of non-alcoholic fatty liver disease between animal models of a high-fat diet and methionine-choline-deficient diet[J]. Molecules, 2022,27(3):858. [40] Itagaki H, Shimizu K, Morikawa S, et al. Morphological and functional characterization of non-alcoholic fatty liver disease induced by a methionine-choline-deficient diet in c57BL/6 mice[J]. Int J Clin Exp Pathol, 2013,6(12):2683-2696. [41] Rinella M E, Green R M. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance[J]. J Hepatol, 40 (1):47-51. [42] Fuchs C D, Radun R, Dixon E D, et al. Hepatocyte-specific deletion of adipose triglyceride lipase (adipose triglyceride lipase/patatin-like phospholipase domain containing 2) ameliorates dietary induced steatohepatitis in mice[J]. Hepatology, 2022,75(1):125-139. [43] Rinella M E, Elias M S, Smolak R R, et al. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline-deficient diet[J]. J Lipid Res, 2008,49(5):1068-1076. [44] Ikawa-Yoshida A, Matsuo S, Kato A, et al. Hepatocellular carcinoma in a mouse model fed a choline-deficient, l-amino acid-defined, high-fat diet[J]. Int J Exp Pathol, 2017,98(4):221-233. [45] Zhang J, Zang X, Lv J, et al. Changes in lipidomics, metabolomics, and the gut microbiota in CDAA-induced NAFLD mice after polyene phosphatidylcholine treatment[J]. Int J Mol Sci, 2023,24(2):1502 [46] Farrell G, Schattenberg J M, Leclercq I, et al. Mouse models of nonalcoholic steatohepatitis: toward optimization of their relevance to human nonalcoholic steatohepatitis[J]. Hepatology, 2019,69(5):2241-2257. [47] Kodama Y, Kisseleva T, Iwaisako K, et al. C-JUN n-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice[J]. Gastroenterology, 2009,137(4):1467-1477. [48] Matsumoto M, Hada N, Sakamaki Y, et al. An improved mouse model that rapidly develops fibrosis in non-alcoholic steatohepatitis[J]. Int J Exp Pathol, 2013,94(2):93-103. [49] Fengler V H, Macheiner T, Kessler S M, et al. Susceptibility of different mouse wild type strains to develop diet-induced NAFLD/AFLD-associated liver disease[J]. Plos One, 2016,11(5):e155163. [50] Kawashita E, Ishihara K, Nomoto M, et al. A comparative analysis of hepatic pathological phenotypes in C57BL/6J and C57BL/6N mouse strains in non-alcoholic steatohepatitis models[J]. Sci Rep, 2019,9(1):204. [51] Miller M J, Harding-Theobald E, DiBattista J V, et al. Progression to cirrhosis is similar among all ages in nonalcoholic fatty liver disease, but liver-related events increase with age[J]. Hepatol Commun, 2023,7(6):e0148 [52] Nestor J J, Parkes D, Feigh M, et al. Effects of alt-801, a GLP-1 and glucagon receptor dual agonist, in a translational mouse model of non-alcoholic steatohepatitis[J]. Sci Rep, 2022,12(1):6666. [53] Li X, Lu Y, Liang X, et al. A new NASH model in aged mice with rapid progression of steatohepatitis and fibrosis[J]. PLoS One, 2023,18(5):e286257. [54] Fontana L, Zhao E, Amir M, et al. Aging promotes the development of diet-induced murine steatohepatitis but not steatosis[J]. Hepatology, 2013,57(3):995-1004. [55] Balakrishnan M, Patel P, Dunn-Valadez S, et al. Women have a lower risk of nonalcoholic fatty liver disease but a higher risk of progression vs men: a systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2021,19(1):61-71. [56] Smati S, Polizzi A, Fougerat A, et al. Integrative study of diet-induced mouse models of NAFLD identifies pparα as a sexually dimorphic drug target[J]. Gut, 2022,71(4):807-821. [57] Tian Y, Hong X, Xie Y, et al. 17β-estradiol (E2) upregulates the ERα/SIRT1/PGC-1α signaling pathway and protects mitochondrial function to prevent bilateral oophorectomy (OVX)-induced nonalcoholic fatty liver disease (NAFLD)[J]. Antioxidants (Basel), 2023,12(12):2100. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||