[1] Muratori L, Lohse A W, Lenzi M. Diagnosis and management of autoimmune hepatitis[J]. BMJ, 2023, 380: e070201. [2] Cai Y, Chen Z, Chen E, et al. Succinic acid ameliorates concanavalin A-Induced hepatitis by altering the inflammatory microenvironment and expression of BCL-2 family proteins[J]. Inflammation, 2024, 47(6):2000-2012. [3] Stoess C, Choi Y-K, Onyuru J, et al. Cell death in liver disease and liver surgery[J]. Biomedicines, 2024, 12: 559-593. [4] Komori A. Recent updates on the management of autoimmune hepatitis[J]. Clin Mol Hepatol, 2021, 27(1): 58-69. [5] Kale J, Osterlund E J, Andrews D W. BCL-2 Family proteins: changing partners in the dance towards death[J]. Cell Death Differ, 2018, 25(1): 65-80. [6] Kalkavan H, Green D R. MOMP, cell suicide as a BCL-2 family business[J]. Cell Death Differ, 2018, 25(1): 46-55. [7] Galluzzi L, Vitale I, Aaronson S A, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541. [8] Zhang Y, Chen X, Gueydan C, et al. Plasma membrane changes during programmed cell deaths[J]. Cell Res, 2018, 28(1): 9-21. [9] Ahmed F F, Abd El-Hafeez A A, Abbas S H, et al. New 1,2,4-triazole Chalcone hybrids induce Caspase-3 dependent apoptosis in A549 human lung adenocarcinoma cells[J]. Eur J Med Chem, 2018, 151: 705-722. [10] Haudek S B, Taffet G E, Schneider M D, et al. TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways[J]. J Clin Invest, 2007, 117(9): 2692-2701. [11] Liu G, Zhao W, Bai J, et al. Formononetin protects against concanavalin-A-induced autoimmune hepatitis in mice through its anti-apoptotic and anti-inflammatory properties[J]. Biochem Cell Biol, 2021, 99(2): 231-240. [12] Sirbe C, Simu G, Szabo I, et al. Pathogenesis of autoimmune hepatitis-cellular and molecular mechanisms[J]. Int J Mol Sci, 2021, 22(24): 13578-13605. [13] Czaja A J. Targeting apoptosis in autoimmune hepatitis[J]. Dig Dis Sci, 2014, 59(12): 2890-2904. [14] Wang Y Q, Lan Y Y, Guo Y C, et al. Down-regulation of microRNA-138 improves immunologic function via negatively targeting p53 by regulating liver macrophage in mice with acute liver failure[J]. Biosci Rep, 2019, 39(7): BSR-2019-0763_RET. [15] Fox C K, Furtwaengler A, Nepomuceno R R, et al. Apoptotic pathways in primary biliary cirrhosis and autoimmune hepatitis[J]. Liver 2001, 21(4), 272-279. [16] Bertheloot D, Latz E, Franklin B S. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death[J]. Cell Mol Immunol, 2021, 18(5): 1106-1121. [17] He S, Wang L, Miao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha[J]. Cell, 2009, 137(6):1100-1111. [18] Ketelut-Carneiro N, Fitzgerald K A. Apoptosis, pyroptosis, and necroptosis-Oh my! The many ways a cell can die[J]. J Mol Biol, 2022, 434(4): 167378-167431. [19] Dara L. The receptor interacting protein kinases in the liver[J]. Semin Liver Dis, 2018, 38(1):73-86. [20] Zhou Y, Dai W, Lin C, et al. Protective effects of necrostatin-1 against concanavalin A-induced acute hepatic injury in mice[J]. Mediators Inflamm, 2013, 2013:706156. [21] Kashyap D, Garg V K, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis[J]. Adv Protein Chem Struct Biol, 2021,125: 73-120. [22] Arshad M I, Piquet-Pellorce C, Filliol A, et al. The chemical inhibitors of cellular death, PJ34 and Necrostatin-1, down-regulate IL-33 expression in liver[J]. J Mol Med (Berl), 2015, 93(8): 867-878. [23] Kashyap D, Garg V K, Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis[J]. Adv Protein Chem Struct Biol, 2021,125: 73-120. [24] Günther C, He G W, Kremer A E, et al. The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis[J]. J Clin Investig, 2016, 126(11): 4346-4360. [25] Liu X, Yu T, Hu Y, et al. The molecular mechanism of acute liver injury and inflammatory response induced by concanavalin A[J]. Mol Biomed, 2021, 2(1): 24-35. [26] Hamon A, Piquet-Pellorce C, Dimanche-Boitrel M T, et al. Intrahepatocytic necroptosis is dispensable for hepatocyte death in murine immune-mediated hepatitis[J]. J Hepatol, 2020, 73(3): 699-701. [27] Omary M B, Cohen D E, El-Omar E M, et al. Not all mice are the same: standardization of animal research data presentation[J]. Gastroenterology, 2016, 150(7):1503-1504. [28] Wu M Y, Lu J H. Autophagy and macrophage functions: inflammatory response and phagocytosis[J]. Cells, 2019, 9(1): 70-94. [29] Betin V M S, MacVicar T D B, Parsons S F, et al. A cryptic mitochondrial targeting motif in Atg4D links caspase cleavage with mitochondrial import and oxidative stress[J]. Autophagy, 2012, 8(4): 664-676. [30] Han J, Hou W, Goldstein L A, et al. A complex between Atg7 and caspase-9: a novel mechanism of cross-regulation between autophagy and apoptosis[J]. J Biol Chem, 2014, 289(10): 6485-6497. [31] Fan X, Men R, Wang H, et al. Methylprednisolone decreases mitochondria-mediated apoptosis and autophagy dysfunction in hepatocytes of experimental autoimmune hepatitis model via the Akt/mTOR signaling [J]. Front Pharmacol, 2019, 10:1189-1202. [32] Zhou Y, Chen J, Yao Z, et al. Gastrodin ameliorates concanavalin A-induced acute hepatitis via the IL6/JAK2/STAT3 pathway[J]. Immunopharmacol Immunotoxicol, 2022, 44(6): 925-934. [33] Rao Z, Zhu Y, Yang P, et al. Pyroptosis in inflammatory diseases and cancer [J]. Theranostics, 2022, 12(9): 4310-4329. [34] Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms[J]. Cell Discov, 2020, 6: 36-57. [35] Miao E A, Leaf I A, Treuting P M, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria[J]. Nat Immunol, 2010, 11(12): 1136-1142. [36] Chauhan D, Vande Walle L, Lamkanfi M. Therapeutic modulation of inflammasome pathways[J]. Immunol Rev, 2020, 297(1):123-138. [37] Kayagaki N, Stowe I B, Lee B L, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature, 2015, 526(7575): 666-671. [38] Fan X, Men R, Wang H, et al. Methylprednisolone Decreases Mitochondria-Mediated Apoptosis and Autophagy Dysfunction in Hepatocytes of Experimental Autoimmune Hepatitis Model via the Akt/mTOR Signaling[J]. Frontiers in pharmacology, 2019, 10:1189-1202. [39] Zhou Y, Chen J, Yao Z, Gu X. Gastrodin ameliorates Concanavalin A-induced acute hepatitis via the IL6/JAK2/STAT3 pathway[J]. Immunopharmacol Immunotoxicol, 2022, 44(6): 925-934. [40] Wang J, Sun Z, Xie J, et al. Inflammasome and pyroptosis in autoimmune liver diseases[J]. Front Immunol, 2023,14: 1150879-1150896. [41] Hu J J, Liu X, Xia S, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation[J]. Nat Immunol, 2020, 21(7):736-745. [42] Shi F L, Ni S T, Luo S Q, et al. Dimethyl fumarate ameliorates autoimmune hepatitis in mice by blocking NLRP3 inflammasome activation[J]. Int Immunopharmacol, 2022, 108:108867-108883. [43] Dixon S J, Lemberg K M, Lamprecht M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5): 1060-1072. [44] Deng G, Li Y, Ma S, et al. Caveolin-1 dictates ferroptosis in the execution of acute immune-mediated hepatic damage by attenuating nitrogen stress[J]. Free Radic Biol Med, 2020, 148: 151-161. [45] Chen X, Kang R, Kroemer G, et al. Ferroptosis in infection, inflammation, and immunity[J]. J Exp Med, 2021, 218(6): e20210518. [46] Zeng T, Deng G, Zhong W, et al. Indoleamine 2,3-dioxygenase 1enhanceshepatocytes ferroptosis in acute immune hepatitis associated with excess nitrative stress[J]. Free Radic Biol Med, 2020, 152:668-679. [47] Liu Y, Chen H, Hao J, et al. Characterization and functional prediction of the microRNAs differentially expressed in a mouse model of concanavalin A-induced autoimmune hepatitis[J]. Int J Med Sci, 2020, 17(15): 2312-2327. |