[1] YEYn GOZ. Three attacks in the development of HBV-related liver failure. Infect Dis Info, 2009, 22: 276-279. [2] Brown MD, Sacks DB. Compartmentalised MAPK pathways[M]//Protein-Protein Interactions as New Drug Targets. Springer Berlin Heidelberg, 2008: 205-235. [3] Coulombe P, Meloche S. Atypical mitogen-activated protein kinases: structure, regulation and functions. Biochim Biophys Acta, 2007, 1773: 1376-1387. [4] Buffet C, Catelli MG, Hecale-Perlemoine K, et al. Dual specificity phosphatase 5,a specificNegative regulator of ERK signaling, is induced by serum response factor and Elk-1 transcription factor. PLoS One, 2015,10: e0145484. [5] Nath B, Szabo G. Hypoxia and hypoxia inducible factors: Diverse role s in liver diseases.Hepatology, 2012, 55: 622-633. [6] Sutton KM, Hayat S, Chau NM, et al. Selective inhibition of MEK1/2 reveals a differe-ntial requirement for ERK1/2 signalling in the regulation of HIF-1 in response to hypoxiaand IGF-1.Oncogene, 2007, 26: 3920-3929. [7] Zhao YL, Ma X, Wang JB, et al. Curcumin protects against CCl4-induced liver fibrosis in rats by inhibiting HIF-1α through an ERK-dependent pathway.Molecules, 2014,19: 18767-18780. [8] Verma AK, Yadav A, Dewangan J, et al. Isoniazid prevents Nrf2 translocation by inhibiting ERK1 phosphorylation and induces oxidative stress and apoptosis. Redox biology, 2015, 6: 80-92. [9] Liu H, Zhang W, Dong S, et al. Protective effects of sea buckthorn polysaccharide extracts against LPS/d-GalN-induced acute liver failure in mice via suppressing TLR4-NF-κB signaling. J Ethnopharmacol, 2015, 176: 69-78. [10] Zhang F, Chen L, Jin H, et al. Activation of Fas death receptor pathway and Bid in hepatocytes is involved in saikosaponin D induction of hepatotoxicity. EnvironToxicol Pharmacol, 2016, 41: 8-13. [11] Czaja MJ. The future of GI and liver research: editorial perspectives. III. JNK/AP-1 regulation of hepatocyte death. Am J Physiol Gastr L, 2003, 284: G875-G879. [12] Malhi H, Gores GJ. Cellular and molecular mechanisms of liver injury. Gastroenterology, 2008, 134: 1641-1654. [13] Wang Y, Singh R, Lefkowitch JH, et al. Tumor necrosis factor-induced toxic liver injury results from JNK2-dependent activation of caspase-8 and the mitochondrial death pathway. J Biol Chem, 2006, 281:15258-15267. [14] Schattenberg JM, Singh R, Wang Y, et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology, 2006, 43:163-172. [15] Malhi H, Bronk SF, Werneburg NW, et al. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem, 2006, 281: 12093-12101. [16] Gunawan BK, Liu ZX, Han D, et al. c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology, 2006, 131: 165-178. [17] Wu YL, Lian LH, Wan Y, et al. Baicalein inhibits nuclear factor-κB and apoptosis via c-FLIP and MAPK in D-GalN/LPS induced acute liver failure in murine models. Chem Biol Interact, 2010, 188: 526-534. [18] Heinrichsdorff J, Luedde T, Perdiguero E, et al. p38α MAPK inhibits JNK activation and collaborates with IκB kinase 2 to prevent endotoxin‐induced liver failure. EMBO Rep, 2008, 9: 1048-1054. [19] Takamura M, Matsuda Y, Yamagiwa S, et al. An inhibitor of c-Jun NH2-terminal kinase, SP600125, protects mice from D-galactosamine/lipopolysaccharide-induced hepatic failure by modulating BH3-only proteins. Life Sci, 2007, 80: 1335-1344. [20] Tu ón MJ, Alvarez M, Culebras JM, et al. An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure. W J Gastroenterol, 2009, 15: 3086. [21] Garcia-Lastra R, Alvarez M, San-Miguel B, et al. 171 MAP Kinase-Dependent pathways are activated during programmed cell death in a viral modelof fulminant hepatic failure. J Hepatol, 2008, 48: S73. [22] Cuadrado A, Nebreda A. Mechanisms and functions of p38 MAPK signalling. Biochem. J, 2010, 429: 403-417. [23] 陈婧, 刘晓燕, 杨昊臻, 等. 磷酸化 p38 丝裂原活化蛋白激酶在急性肝衰竭小鼠模型及 HBV 相关慢加急性肝衰竭患者肝组织中的表达及意义磷酸化 p38 丝裂原活化蛋白激酶在急性肝衰竭小鼠模型及 HBV 相关慢加急性肝衰竭患者肝组织中的表达及意义. 临床肝胆病杂志, 2015, 4: 27. [24] Deng X, Lu J, Lehman-McKeeman LD, et al. p38 mitogen-activated protein kinase-dependent tumor necrosis factor-α-converting enzyme is important for liver injury in hepatotoxic interaction between lipopolysaccharide and ranitidine. J Pharmacol Exp Ther, 2008, 326: 144-152. [25] Jiao M, Ren F, Zhou L, et al. The protective role of peroxisome proliferator activated receptors-α and pathomechanism in D-galactosamine/lipopolysaccharide-induced acute liver failure in rats. Zhonghua Nei Ke Za Zhi, 2014, 53: 730-734. [26] Ganai AA, Khan AA, Malik ZA, et al. Genistein modulates the expression of NF-κB and MAPK (p-38 and ERK1/2), thereby attenuating d-Galactosamine induced fulminant hepatic failure in Wistar rats. Toxicol Appl Pharmacol, 2015, 283: 139-146. [27] Wang Y, Xie J, Li Y, et al. Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure. Eur J Nutr, 2015: 1-11. [28] Ma JQ, Li Z, Xie WR, et al. Quercetin protects mouse liver against CCl 4-induced inflammation by the TLR2/4 and MAPK/NF-κB pathway. Int Immunopharmacol, 2015, 28: 531-539. [29] Chen L, Ren F, Zhang H, et al. Inhibition of glycogen synthase kinase 3β ameliorates D-GalN/LPS-induced liver injury by reducing endoplasmic reticulum stress-triggered apoptosis. PLoS One, 2012, 7: e45202. [30] Feng R.The inhibition of glycogen synthase kinase 3beta ameliorates liver ischemia reperfusion injury via an IL-10-midiated immune modulatory mechanism. Hepatology,2011,54:687-696. [31] Yang BZ. Role of glycogen synthase kinase 3βin the pathogenesis of D-GaIN/LPS-induced actue liver injury in mice. W Chin J Digestol, 2013, 20:3656-3662. [32] Juarez J, Bendall L, Bradstock K. Chemokines and their receptors as therapeutic targets: the role of the SDF-1/CXCR4 axis. Curr Pharm Design, 2004, 10: 1245-1259. [33] 洪巧, 王柯尹, 董进忠, 等. CXCR7 在急性肝衰竭大鼠肝组织中的表达及意义. 医学研究杂志, 2013, 42: 43-47. [34] 李宁, 陈明泉, 李谦, 等. 慢加急性肝衰竭患者 Toll 样受体 3 触发后 DC 分泌细胞因子的变化. 中国肝脏病杂志 (电子版), 2012, 4: 5-9. |