[1] Powell EE, Wong VWS, Rinella M. Non-alcoholic fatty liver disease. Lancet, 2021,397(10290):2212-2224. [2] Younossi ZM, Golabi P, Paik JM, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology,2023,77(4):1335-1347.? [3] Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab,2021,50:101122. [4] Begriche K, Massart J, Robin MA, et al. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology,2013,58(4):1497-1507. [5] Koliaki C, Szendroedi J, Kaul K, et al. Adaptation of Hepatic Mitochondrial Function in Humans with Non-Alcoholic Fatty Liver Is Lost in Steatohepatitis. Cell Metabolism,2015,21(5):739-746. [6] Moore MP, Cunningham RP, Meers GM, et al. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology,2022,76(5):1452-1465. [7] Pedersen JS, Rygg MO, Chr? is K, et al. Influence of NAFLD and bariatric surgery on hepatic and adipose tissue mitochondrial biogenesis and respiration. Nat Commun, 2022,13(1):2931. [8] Petersen KF, Befroy DE, Dufour S, et al. Assessment of Hepatic Mitochondrial Oxidation and Pyruvate Cycling in NAFLD by (13)C Magnetic Resonance Spectroscopy. Cell Metab,2016,24(1):167-171. [9] Luukkonen PK, Dufour S, Lyu K, et al. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A,2020,117(13):7347-7354. [10] Fromenty B, Roden M. Mitochondrial alterations in fatty liver diseases. J Hepatol,2023,78(2):415-429. [11] Gray MW, Burger G, Lang BF. The origin and early evolution of mitochondria. Genome Biol,2001,2(6):REVIEWS1018. [12] Kroon AM, Van den Bogert C. Biogenesis of mitochondria and genetics of mitochondrial defects. J Inherit Metab Dis,1987,10 Suppl 1:54-61. [13] Sickmann A, Reinders J, Wagner Y, et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A,2003,100(23):13207-13212. [14] Foster LJ, de Hoog CL, Zhang Y, et al. A mammalian organelle map by protein correlation profiling. Cell,2006,125(1):187-199. [15] Heldt HW. Energy metabolism in mitochondria. Angew Chem Int Ed Engl, 1972,11(9):792-798. [16] Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol,2018,20(7):745-754. [17] Green DR, Reed JC. Mitochondria and apoptosis. Science,1998,281(5381):1309-1312. [18] Schirrmacher V. Mitochondria at Work: New Insights into Regulation and Dysregulation of Cellular Energy Supply and Metabolism. Biomedicines,2020,8(11):526. [19] Chance B, Williams GR. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem,1955,217(1):383-393. [20] Marí M, Morales A, Colell A, et al. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal, 2009,11(11):2685-2700. [21] Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog Lipid Res,2009,48(1):1-26. [22] Pollitt RJ. Disorders of mitochondrial long-chain fatty acid oxidation. J Inherit Metab Dis, 1995,18(4):473-490. [23] He Q, Chen Y, Wang Z, et al. Cellular Uptake, Metabolism and Sensing of Long-Chain Fatty Acids. Front Biosci (Landmark Ed),2023,28(1):10. [24] Eaton S. Control of mitochondrial beta-oxidation flux. Prog Lipid Res, 2002,41(3):197-239. [25] Azzu V, Vacca M, Virtue S, et al. Adipose Tissue-Liver Cross Talk in the Control of Whole-Body Metabolism: Implications in Nonalcoholic Fatty Liver Disease. Gastroenterology,2020,158(7):1899-1912. [26] Rui L. Energy metabolism in the liver. Compr Physiol,2014,4(1):177-197. [27] Ploumi C, Daskalaki I, Tavernarakis N. Mitochondrial biogenesis and clearance: a balancing act. FEBS J,2017,284(2):183-195. [28] Andreux PA, Houtkooper RH, Auwerx J. Pharmacological approaches to restore mitochondrial function. Nat Rev Drug Discov,2013,12(6):465-483. [29] Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol,2018,19(2):109-120. [30] Hernández EÁ, Kahl S, Seelig A, et al. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J Clin Invest,2017,127(2):695-708. [31] Blüher M. Metabolically Healthy Obesity. Endocr Rev,2020,41(3):bnaa004. [32] Sunny NE, Parks EJ, Browning JD, et al. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metab, 2011,14(6):804-810. [33] Cortez-Pinto H, Chatham J, Chacko VP, et al. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA,1999,282(17):1659-1664. [34] Pérez-Carreras M, Del Hoyo P, Martín MA, et al. Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis. Hepatology, 2003,38(4):999-1007. [35] Serviddio G, Bellanti F, Tamborra R, et al. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia-reperfusion injury. Gut,2008,57(7):957-965. [36] Moore MP, Cunningham RP, Meers GM, et al. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology,2022,76(5):1452-1465. [37] Ooi GJ, Meikle PJ, Huynh K, et al. Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis. J Hepatol, 2021,75(3):524-535. |