肝脏 ›› 2023, Vol. 28 ›› Issue (6): 711-715.

• 其他肝病 • 上一篇    下一篇

肝生化指标联合MRI同反相位对非酒精性脂肪肝脂肪定量的预测价值

彭晓林, 龚秀茹, 国亚新, 朱婷婷, 张闽光, 舒政   

  1. 200071 上海中医药大学附属上海市中西医结合医院
  • 收稿日期:2022-08-15 出版日期:2023-06-30 发布日期:2023-08-30
  • 通讯作者: 舒政,Email: shu6808@hotmail.com
  • 基金资助:
    国家自然科学基金(81673743);上海自然科学基金( 19ZR1452400)

The predictive value of serology combined with MRI in-phase and opposed-phase sequences for fat quantification in nonalcoholic fatty liver disease

PENG Xiao-lin, GONG Xiu-ru, GUO Ya-xin, ZHU Ting-ting, ZHANG Min-guang, SHU Zheng   

  1. Department of Radiology, Shanghai Integrated Traditional Chinese and Western Medicine Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
  • Received:2022-08-15 Online:2023-06-30 Published:2023-08-30
  • Contact: SHU Zheng,Email: shu6808@hotmail.com

摘要: 目的 探讨肝生化指标联合影像学方法评估非酒精性脂肪性肝病(NAFLD)脂肪含量的新方法,并构建多元线性回归预测模型。方法 共收集上海中医药大学附属市中医医院放射科2015年1月—2020年12月期间的NAFLD患者220例,其中正常对照组86例,脂肪肝组134例。所有患者须同时期行CT和MRI扫描,MRI扫描序列包括同反相位序列和弥散加权成像序列。于放射科PACS系统上调取其临床病史、肝生化指标以及影像学图像,收集临床、检验数据并测量其影像学数值。肝生化指标包括丙氨酸氨基转移酶(ALT),天冬氨酸氨基转移酶(AST),γ-谷氨酰胺转肽酶(γ-GT),肝功能指标包括总胆固醇(TC),甘油三酯(TG)、高密度脂蛋白(HDL-C)、低密度脂蛋白(LDL-C)。分析肝生化指标、同反相位序列和弥散加权成像与不同程度脂肪肝的相关性,并构建多元线性回归预测模型。结果 轻度、中度和重度脂肪肝AST分别为(32.78±23.81 )、(37.53±24.87 )、(46.10±28.62) U/L,ALT分别为(37.79±33.64) 、(43.60±22.60)、(70.11±57.23) U/L,TG分别为(2.18±1.09)、(2.47±1.75)、(3.00±2.60) mmol/L,γ-GT分别为(61.81±86.91)、(108.22±157.38)、(78.80±73.39) U/L,与对照组[(27.30±17.48) 、(31.80±47.47)、(1.82±1.26)、(44.66±61.66) U/L]相比均有所升高,差异有统计学意义(P<0.05)。轻度、中度和重度脂肪肝HDL-C分别为(1.19±0.35)、(1.10±0.28)、(1.11±0.31) mmol/L,与对照组[(1.32±0.30)mmol/L]相比有所降低,差异有统计学意义(P<0.05)。在诊断轻度脂肪肝时,MRI同反相位测得肝脏脂肪分数(HFF)的最佳截断值为0.04,AUROC为0.911(95%CI 0.873~0.949),敏感度为88.1%,特异度为81.4%;在诊断中度脂肪肝时,最佳截断值为0.11,AUROC为0.880(95%CI 0.815~0.945),敏感度为87.2%,特异度为77.5%;在诊断重度脂肪肝时,最佳截断值为0.18,AUROC为0.978(95%CI 0.960~0.996),敏感度为100%,特异度为88.9%。最终构建的多元线性回归方程为:肝/脾密度之比=1.202-0.002AST-2.215HFF (R2=0.690)。结论 在NAFLD患者脂肪含量的初期诊断中,AST和HFF具有可替代肝/脾CT值之比预测NAFLD脂肪含量的潜力。

关键词: 非酒精性脂肪性肝病, 血清学, 影像学, 无创诊断, 多元线性回归

Abstract: Objective To explore a new method for assessing fat content in nonalcoholic fatty liver disease(NAFLD) by combining imaging methods and serological indicators to construct a multiple linear regression prediction model. Methods A total of 220 patients were enrolled from January 2015 to December 2020 in the Radiology Department of The Hospital of Traditional Chinese Medicine affiliated with Shanghai University of Traditional Chinese Medicine, including 86 patients in the non-NAFLD group and 134 patients in the NAFLD group. Furthermore, the NAFLD group was subdivided into mild group, moderate group and severe group, according to the degree of fatty liver. All patients underwent CT and MRI scans at the same time and obtained serological examination including alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamine transpeptidase (γ-GT), total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL-C), and low-density lipoprotein (LDL-C). The correlation of serology, MRI in-phase and opposed-phase and diffusion-weighted imaging with different degrees of fatty liver was analyzed, and the prediction model of multiple linear regression was established. Results AST levels of the mild, moderate and severe groups were 32.78±23.81 U/L, 37.53±24.87 U/L and 46.10±28.62 U/L, respectively. ALT levels were 37.79±33.64 U/L, 43.60±22.60 U/L and 70.11±57.23 U/L, respectively. TG levels were (2.18±1.09), (2.47±1.75) and (3.00±2.60) mmol/L, respectively. GGT levels were 61.81±86.91 U/L, 108.22±157.38 U/Land 78.80±73.39 U/L, respectively. These serological indicators were significantly higher than the control group(P<0.05). HDL-C of the mild, moderate and severe groups were 1.19±0.35 U/L, 1.10±0.28 mmol/L and 1.11±0.31 mmol/L, respectively, significantly lower than that of the control group (1.32±0.30 mmol/L)(P<0.05). In the diagnosis of the mild group, the optimal cut-off value of HFF was 0.04, AUROC was 0.911 (95%CI 0.873-0.949), sensitivity was 88.1%, specificity was 81.4%; In the diagnosis of the moderate group, the optimal cut-off value was 0.11, AUROC was 0.880 (95%CI 0.815-0.945), sensitivity was 87.2%, specificity was 77.5%. In the diagnosis of the severe group, the optimal cut-off value was 0.18, AUROC was 0.978 (95%CI 0.960-0.996), sensitivity was 100%, and specificity was 88.9%. The final multiple linear regression equation was: liver/spleen density ratio =1.202-0.002AST-2.215HFF (R2=0.690). Conclusion In the initial diagnosis of fat content in patients with NAFLD, AST and HFF have the potential to substitute the ratio of liver/spleen CT value in predicting the fat content of NAFLD.

Key words: Nonalcoholic fatty liver disease, Serology, Imaging, Noninvasive diagnosis, Multiple linear regression