肝脏 ›› 2023, Vol. 28 ›› Issue (7): 743-745.
• 前沿、探索与争鸣 • 下一篇
张明明, 汪艳
收稿日期:
2023-06-04
发布日期:
2023-09-19
通讯作者:
汪艳, Email: yanwang@smu.edu.cn
基金资助:
Received:
2023-06-04
Published:
2023-09-19
摘要: 慢性乙型肝炎仍是一个重要的公共卫生问题。近年来,肝线粒体相关变化作为肝纤维化中的重要角色受到关注,而HBV感染可引起肝线粒体代谢功能障碍、mtDNA损伤释放、线粒体动力学异常等线粒体应激表现。本文主要对肝线粒体应激影响HBV慢性病程的机制研究进行综述。
张明明, 汪艳. 线粒体应激参与慢性乙型肝炎肝损伤的机制研究[J]. 肝脏, 2023, 28(7): 743-745.
[1] Hsu YC, Huang DQ, Nguyen MH. Global burden of hepatitis B virus: current status, missed opportunities and a call for action. Nat Rev Gastroenterol Hepato, 2023. [2] Hyams KC. Risks of chronicity following acute hepatitis B virus infection: a review. Clin Infect Dis, 1995, 20(4):992-1000. [3] McMahon BJ. Natural History of Chronic Hepatitis B. Clin Liver Dis, 2010, 14(3):381-396. [4] Thomas DL. Global Elimination of Chronic Hepatitis. N Engl J Med, 2019, 380(21):2041-2050. [5] Sheena BS, Hiebert L, Han H, et al. Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol Hepatol, 2022, 7(9):796-829. [6] Yuen MF, Chen DS, Dusheiko GM, et al. Hepatitis B virus infection. Nat Rev Dis Primers, 2018, 4(1):1-20. [7] Jeng WJ, Papatheodoridis GV, Lok ASF. Hepatitis B. Lancet, 2023, 401(10381):1039-1052. [8] Hossain MG, Akter S, Ohsaki E. Impact of the Interaction of Hepatitis B Virus with Mitochondria and Associated Proteins. Viruses, 2020, 12(2):175. [9] Loureiro D, Tout I, Narguet S, et al. Mitochondrial stress in advanced fibrosis and cirrhosis associated with chronic hepatitis B, chronic hepatitis C, or nonalcoholic steatohepatitis. Hepatology, 2023, 77(4):1348-1365. [10] Liang YJ, Teng W, Chen CL, et al. Clinical Implications of HBV PreS/S Mutations and the Effects of PreS2 Deletion on Mitochondria, Liver Fibrosis, and Cancer Development. Hepatology, 2021, 74(2):641-655. [11] Wheelhouse NM, Lai PBS, Wigmore SJ. Mitochondrial D-loop mutations and deletion profiles of cancerous and noncancerous liver tissue in hepatitis B virus-infected liver. Br J Cancer. 2005;92(7):1268-1272. [12] Fujita N, Sugimoto R, Ma N, et al. Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C. J Viral Hepat, 2008, 15(7):498-507. [13] Yang D, Oyaizu Y, Oyaizu H, Olsen GJ, Woese CR. Mitochondrial origins. Proc Natl Acad Sci U S A, 1985, 82(13):4443-4447. [14] Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature, 1981, 290(5806):457-465. [15] Suliman HB, Piantadosi CA. Mitochondrial Quality Control as a Therapeutic Target. Pharmacol Rev, 2016, 68(1):20-48. [16] Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol, 2018, 20(7):745-754. [17] Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell, 2016, 166(3):555-566. [18] Marchi S, Guilbaud E, Tait SWG. Mitochondrial control of inflammation. Nat Rev Immunol, 2023, 23(3):159-173. [19] An P, Wei LL, Zhao S, et al. Hepatocyte mitochondria-derived danger signals directly activate hepatic stellate cells and drive progression of liver fibrosis. Nat Commun, 2020, 11(1):2362. [20] Mitchell C, Robin MA, Mayeuf A, et al. Protection against hepatocyte mitochondrial dysfunction delays fibrosis progression in mice. Am J Pathol, 2009, 175(5):1929-1937. [21] Zhao Y, Wang Z, Feng D, et al. p66Shc Contributes to Liver Fibrosis through the Regulation of Mitochondrial Reactive Oxygen Species. Theranostics, 2019, 9(5):1510-1522. [22] Zhang L, Zhang Y, Chang X, et al. Imbalance in mitochondrial dynamics induced by low PGC-1α expression contributes to hepatocyte EMT and liver fibrosis. Cell Death Dis, 2020, 11(4):226. [23] Wang J, Yang Y, Sun F, et al. ALKBH5 attenuates mitochondrial fission and ameliorates liver fibrosis by reducing Drp1 methylation. Pharmacol Res, 2023, 187:106608. [24] Okamoto H, Tsuda F, Sakugawa H, et al. Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. J Gen Virol, 1988, 69 ( Pt 10):2575-2583. [25] Takada S, Shirakata Y, Kaneniwa N, et al. Association of hepatitis B virus X protein with mitochondria causes mitochondrial aggregation at the nuclear periphery, leading to cell death. Oncogene, 1999, 18(50):6965-6973. [26] Rahmani Z, Huh KW, Lasher R, et al. Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J Virol, 2000, 74(6):2840-2846. [27] Bouchard MJ, Wang LH, Schneider RJ. Calcium signaling by HBx protein in hepatitis B virus DNA replication. Science, 2001, 294(5550):2376-2378. [28] Waris G, Huh KW, Siddiqui A. Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Mol Cell Biol, 2001, 21(22):7721-7730. [29] Shirakata Y, Koike K. Hepatitis B virus X protein induces cell death by causing loss of mitochondrial membrane potential. J Biol Chem, 2003, 278(24):22071-22078. [30] Lee YI, Hwang JM, Im JH, et al. Human hepatitis B virus-X protein alters mitochondrial function and physiology in human liver cells. J Biol Chem, 2004, 279(15):15460-15471. [31] Gao WY, Li D, Cai DE, et al. Hepatitis B virus X protein sensitizes HL-7702 cells to oxidative stress-induced apoptosis through modulation of the mitochondrial permeability transition pore. Oncol Rep, 2017, 37(1):48-56. [32] Clippinger AJ, Bouchard MJ. Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. J Virol, 2008, 82(14):6798-6811. [33] Ling LR, Zheng DH, Zhang ZY, et al. Effect of HBx on inflammation and mitochondrial oxidative stress in mouse hepatocytes. Oncol Lett, 2020, 19(4):2861-2869. [34] Geng X, Huang C, Qin Y, et al. Hepatitis B virus X protein targets Bcl-2 proteins to increase intracellular calcium, required for virus replication and cell death induction. Proc Natl Acad Sci U S A, 2012, 109(45):18471-18476. [35] Kim SJ, Khan M, Quan J, Till A, Subramani S, Siddiqui A. Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS Pathog, 2013, 9(12):e1003722. [36] Chi HC, Chen SL, Lin SL, et al. Thyroid hormone protects hepatocytes from HBx-induced carcinogenesis by enhancing mitochondrial turnover. Oncogene, 2017, 36(37):5274-5284. [37] Fisicaro P, Barili V, Montanini B, et al. Targeting mitochondrial dysfunction can restore antiviral activity of exhausted HBV-specific CD8 T cells in chronic hepatitis B. Nat Med, 2017, 23(3):327-336. [38] Acerbi G, Montali I, Ferrigno GD, et al. Functional reconstitution of HBV-specific CD8 T cells by in vitro polyphenol treatment in chronic hepatitis B. J Hepatol, 2021, 74(4):783-793. [39] Lee SY, Choi YM, Oh SJ, et al. rt269I Type of Hepatitis B Virus (HBV) Leads to HBV e Antigen Negative Infections and Liver Disease Progression via Mitochondrial Stress Mediated Type I Interferon Production in Chronic Patients With Genotype C Infections. Front Immunol, 2019, 10:1735. [40] Huang C, Shao J, Lou C, et al. Reduced Energy Metabolism Impairs T Cell-Dependent B Cell Responses in Patients With Advanced HBV-Related Cirrhosis. Front Immunol, 2021, 12:660312. [41] Chen T, Xun Z, Lin J, et al. Association between mitochondrial DNA content and baseline serum levels of HBsAg in chronic hepatitis B infection. J Med Virol, 2017, 89(11):1958-1962. [42] Li L, Hann HW, Wan S, et al. Cell-free circulating mitochondrial DNA content and risk of hepatocellular carcinoma in patients with chronic HBV infection. Sci Rep, 2016, 6:23992. |
[1] | 陈丽霞, 许镇额, 刘海钰, 林建辉. 血清前白蛋白-总胆红素评分对血浆置换经治乙型肝炎病毒相关慢加急性肝衰竭预后的评估价值[J]. 肝脏, 2023, 28(7): 794-798. |
[2] | 赵心怡, 孙杰, 徐炜新. 血清Maresin-1水平变化对非酒精性脂肪性肝病的影响[J]. 肝脏, 2023, 28(7): 806-809. |
[3] | 刘雅妮, 郭瑞芳, 王欢, 娄婷婷, 李燕. 氧化应激参与肝纤维化发生发展的研究进展[J]. 肝脏, 2023, 28(6): 724-727. |
[4] | 肖滢, 吴治念, 王亚东. 肝素非抗凝作用在肝病应用中的研究进展[J]. 肝脏, 2023, 28(6): 730-733. |
[5] | 李芬, 韦淑珍, 李良, 莫雨灵, 傅小凡, 雷任国, 郑子玉. HBV携带孕妇妊娠期及产后肝炎发作风险及NAs干预观察[J]. 肝脏, 2023, 28(5): 527-529. |
[6] | 严景全, 刘娟, 卢雪兰, 蓝云翠, , 林占洲. 直接抗病毒药物对持续病毒学应答慢性丙型肝炎患者肝纤维化的影响[J]. 肝脏, 2023, 28(5): 530-533. |
[7] | 冯薇薇, 孔严, 康茹. 慢性丙型肝炎合并代谢相关脂肪性肝病患者的临床特征及预后评价[J]. 肝脏, 2023, 28(5): 534-536. |
[8] | 张朋垒, 张明婷, 郝礼森, 靳丽敏, 潘恩亮, 何宇, 苗笑佳, 王薇. 四氯化碳诱导的大鼠肝纤维化肝组织中SHP2表达与在体肝星状细胞活化及增殖的关系[J]. 肝脏, 2023, 28(5): 549-553. |
[9] | 李庆鑫, 尹卿, 关瑛琦, 邵春红. 幽门螺杆菌感染与自身免疫性肝病关系的分析[J]. 肝脏, 2023, 28(5): 590-592. |
[10] | 陈芬兰, 程计林, 林文, 陈丽萍. 血清HBV RNA的临床研究进展[J]. 肝脏, 2023, 28(5): 607-610. |
[11] | 邓霖霖, 石清兰, 韦华柱, 莫展进, 黄祖鸿. 乙型肝炎病毒相关肝细胞癌高危因素分析[J]. 肝脏, 2023, 28(5): 614-617. |
[12] | 薛荣荣, 赵川, 段庆宁, 肖丽, 咸建春. 关于《慢性乙型肝炎防治指南(2022 年版)》“儿童患者”抗病毒治疗相关建议的拙见[J]. 肝脏, 2023, 28(4): 403-404. |
[13] | 李珊珊, 徐曼曼, 杨雪, 陈煜. 2012至2021年北京佑安医院HBV相关慢加急性肝衰竭患者住院费用分析[J]. 肝脏, 2023, 28(4): 405-409. |
[14] | 杨梅, 吕运海. 慢性乙型肝炎抗病毒治疗过程中临床终点事件精准预测体系的建立[J]. 肝脏, 2023, 28(4): 423-427. |
[15] | 曹晶晶, 李荣, 李晶, 潘峰. 核苷(酸)类似物对ALT正常或轻度升高的HBeAg阴性慢性乙型肝炎患者的疗效分析[J]. 肝脏, 2023, 28(4): 432-435. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 82
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 133
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||