[1] Ji Y, Yin Y, Sun L, et al. The molecular and mechanistic insights based on gut-liver axis: nutritional target for Non-Alcoholic Fatty Liver Disease (NAFLD) improvement. Int J Mol Sci, 2020, 21(9). [2] Jadhav K, Cohen TS. Can you trust your gut? Implicating a disrupted intestinal microbiome in the progression of NAFLD/NASH. Frontiers in Endocrinology, 2020, 11. N:592157. [3] Savidge TC, Newman P, Pothoulakis C, et al. Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. Gastroenterology, 2007, 132(4): 1344-1358. [4] Spadoni I, Zagato E, Bertocchi A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science, 2015, 350(6262): 830-834. [5] Zhou Z, Zhong W. Targeting the gut barrier for the treatment of alcoholic liver disease. Liver Res, 2017, 1(4): 197-207. [6] Mouries J, Brescia P, Silvestri A, et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol, 2019, 71(6): 1216-1228. [7] Spadoni I, Zagato E, Bertocchi A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science, 2015, 350: 830-834. [8] Huang J, Kelly CP, Bakirtzi K, et al. Clostridium difficile toxins induce VEGF-A and vascular permeability to promote disease pathogenesis. Nat Microbiol, 2019, 4(2): 269-279. [9] Bertocchi A, Carloni S, Ravenda PS, et al. Gut vascular barrier impairment leads to intestinal bacteria dissemination and colorectal cancer metastasis to liver. Cancer Cell, 2021, 39(5): 708-724 e11. [10] Grander C, Grabherr F, Spadoni I, et al. The role of gut vascular barrier in experimental alcoholic liver disease and A. muciniphila supplementation. Gut Microbes, 2020, 12(1): 1851986. [11] Aliyev A, Seyedghodraty M, Mohammadi M, et al. Impact of high-fat diet and hypoxia on the serum levels of main vasoconstrictors in male rabbits. J Cardiovasc Thorac Res, 2017, 9(2): 90-94. [12] Dietrich P, Moleda L, Kees F, et al. Dysbalance in sympathetic neurotransmitter release and action in cirrhotic rats: impact of exogenous neuropeptide Y. J Hepatol, 2013, 58(2): 254-261. [13] Sorribas M, De Gottardi A, Moghadamrad S, et al. Isoproterenol disrupts intestinal barriers activating gut-liver-axis: Effects on intestinal mucus and vascular barrier as entry sites. Digestion, 2020, 101: 717-729. [14] Khare E, Arora NK. Dual activity of pyocyanin from pseudomonas aeruginosa--antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Can J Microbiol, 2011, 57(9): 708-713. [15] Manago A, Becker KA, Carpinteiro A, et al. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxid Redox Signal, 2015, 22(13): 1097-1110. [16] Peng W, Li H, Zhao X, et al. Pyocyanin modulates gastrointestinal transformation and microbiota. J Agric Food Chem, 2022, 70(8): 2722-2732. [17] Cheng C, Tan J, Qian W, et al. Gut inflammation exacerbates hepatic injury in the high-fat diet induced NAFLD mouse: Attention to the gut-vascular barrier dysfunction. Life Sci, 2018, 209: 157-166. [18] He Y, Yuan X, Zuo H, et al. Berberine exerts a protective effect on gut-vascular barrier via the modulation of the Wnt/Beta-Catenin signaling pathway during sepsis. Cell Physiol Biochem, 2018, 49(4): 1342-1351. [19] Li Y, Zhou J, Qiu J, et al. Berberine reduces gut-vascular barrier permeability via modulation of ApoM/S1P pathway in a model of polymicrobial sepsis. Life Sci, 2020, 261: 118460. [20] Liu P, Bian Y, Liu T, et al. Huai hua san alleviates dextran sulphate sodium-induced colitis and modulates colonic microbiota. J Ethnopharmacol, 2020, 259: 112944. [21] Sarin SK, Pande A, Schnabl B. Microbiome as a therapeutic target in alcohol-related liver disease. Journal of Hepatology, 2019 vol 70 j 260-272, 2019, 70: 260-272. [22] Starkel P, Schnabl B. Bidirectional communication between liver and gut during alcoholic liver disease. Semin Liver Dis, 2016, 36(4): 331-339. [23] Chen P, Schnabl B. Host-microbiome interactions in alcoholic liver disease. Gut Liver, 2014, 8: 237-241. [24] Carpino G, Del Ben M, Pastori D, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology, 2020, 72(2): 470-485. [25] Zhang Y, Jiang W, Xu J, et al. E. coli NF73-1 isolated from NASH patients aggravates NAFLD in mice by translocating into the liver and stimulating M1 polarization. Front Cell Infect Microbiol, 2020, 10: 535940. [26] Wang WJ, Xiao P, Xu HQ, et al. Growing burden of alcoholic liver disease in China: A review. World J Gastroenterol, 2019, 25(12): 1445-1456. [27] 延华, 鲁晓岚, 高艳琼, 等. 西北地区脂肪性肝病的流行病学调查研究. 中华肝脏病杂志, 2015, 8(8): 622-627. [28] Yang AM, Inamine T, Hochrath K, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest, 2017, 127(7): 2829-2841. [29] Chen R-C, Xu L-M, Du S-J, et al. Lactobacillus rhamnosus GG supernatant promotes intestinal barrier function, balances T reg and T H 17 cells and ameliorates hepatic injury in a mouse model of chronic-binge alcohol feeding. Toxicology Letters, 2016, 241: 103-110. [30] Furuya S, Cichocki JA, Konganti K, et al. Histopathological and molecular signatures of a mouse model of acute-on-chronic alcoholic liver injury demonstrate concordance with human alcoholic hepatitis. Toxicol Sci, 2019, 170(2): 427-437. [31] Maccioni L, Gao B, Leclercq S, et al. Intestinal permeability, microbial translocation, changes in duodenal and fecal microbiota, and their associations with alcoholic liver disease progression in humans. Gut Microbes, 2020, 12(1): 1782157. [32] Albillos A, De Gottardi A, Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol, 2020, 72(3): 558-577. [33] Sorribas M, Jakob MO, Yilmaz B, et al. FXR modulates the gut-vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. J Hepatol, 2019, 71(6): 1126-1140. [34] Parhi L, Alon-Maimon T, Sol A, et al. Breast cancer colonization by fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun, 2020, 11(1): 3259. [35] Geller LT, Barzily-Rokni M, Danino T, et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science, 2017, 357: 1156-1160. [36] Bullman S, Pedamallu CS, Sicinska E, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science, 2017, 358: 1443-1448. [37] Fu A, Yao B, Dong T, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell, 2022, 185(8): 1356-1372 e26. [38] Gowing SD, Chow SC, Cools-Lartigue JJ, et al. Gram-negative pneumonia augments non-small cell lung cancer metastasis through host toll-like receptor 4 activation. J Thorac Oncol, 2019, 14(12): 2097-2108. |