摘要: 肝豆状核变性,是位于13号染色体上的ATP7B基因突变导致的一种常染色体隐性遗传病。ATP7B基因突变可能会导致其编码的ATP7B蛋白(铜离子转运ATP酶β肽)结构改变及功能受损,使肝细胞的铜转运及代谢发生障碍,引起铜的异常沉积,进而出现病理表现。本文对ATP7B基因及其编码蛋白的结构功能、ATP7B基因突变的类型及其分布、突变对ATP7B蛋白结构和功能的影响进行了归纳梳理,为进一步分析WD致病的分子机制提供参考。
黄元志, 张敏. 肝豆状核变性ATP7B基因突变的分子机制研究进展[J]. 肝脏, 2023, 28(7): 866-871.
[1] Ferenci P, Stremmel W, Czfonkowska A, et al. Age and sex but not atp7b genotype effectively influence the clinical phenotype of wilson disease. Hepatology, 2019, 69(4):1464-1476. [2] Czfonkowska A, Litwin T, Dusek P, et al. Wilson disease. Nat Rev Dis Primers, 2018, 4(1):21. [3] Chang IJ, Hahn SH. The genetics of Wilson disease. Handb Clin Neurol, 2017, 142:19-34. [4] Jayakanthan S, Mccann C, Lutsenko S. Biochemical and cellular properties of ATP7B variants-sciencedirect. Wilson Disease, 2019:33-50. [5] Ariöz C, Li Y, Wittung-Stafshede P. The six metal binding domains in human copper transporter, ATP7B: molecular biophysics and disease-causing mutations. Biometals, 2017, 30(6):823-840. [6] Lutsenko S. Human copper homeostasis: a network of interconnected pathways. Curr Opin Chem Biol, 2010, 14(2):211-217. [7] Nevitt T, Ohrvik H, Thiele DJ. Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Biophys Acta, 2012, 1823(9):1580-1593. [8] Jia SY, Zhou DH, Ou XJ, et al. Progress in molecular mechanism of hepatolenticular degeneration induced by ATP7B gene mutation. Zhonghua Gan Zang Bing Za Zhi, 2020, 28(2):188-192. [9] 贾思雨, 周冬虎, 欧晓娟, 黄坚.ATP7B基因突变致肝豆状核变性的分子机制研究进展.中华肝脏病杂志, 2020(02):188-192. [10] Shanmugavel KP, Wittung-Stafshede P. Copper relay path through the N-terminus of Wilson disease protein, ATP7B. Metallomics, 2019, 11(9):1472-1480. [11] Tsivkovskii R, MacArthur BC, Lutsenko S. The Lys1010-Lys1325 fragment of the Wilson's disease protein binds nucleotides and interacts with the N-terminal domain of this protein in a copper-dependent manner. J Biol Chem, 2001, 276(3):2234-2242. [12] Tsivkovskii R, Eisses JF, Kaplan JH, et al. Functional properties of the copper-transporting ATPase ATP7B (the Wilson's disease protein) expressed in insect cells. J Biol Chem, 2002, 277(2):976-983. [13] Lewis D, Pilankatta R, Inesi G, et al. Distinctive features of catalytic and transport mechanisms in mammalian sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) and Cu+ (ATP7A/B) ATPases. J Biol Chem, 2012, 287(39):32717-3227. [14] Lutsenko S, Jayakanthan S, Dmitriev O Y. Molecular Architecture of the Copper-Transporting ATPase ATP7B. Clinical and Translational Perspectives on WILSON DISEASE Elsevier. 2019, 33-43. [15] Vanderwerf SM, Cooper MJ, Stetsenko IV, et al. Copper specifically regulates intracellular phosphorylation of the Wilson's disease protein, a human copper-transporting ATPase. J Biol Chem, 2001, 276(39):36289-36294. [16] Lu ZK, Cheng J, Li SM, et al. Clinical phenotype and ATP7B gene variation in 316 children with hepatolenticular degeneration.J Clin Hepatol, 2022, 60(04):317-322. [17] 卢致琨, 程静, 黎丝敏, 等. 肝豆状核变性患儿316例临床表型和ATP7B基因变异特征.中华儿科杂志, 2022, 60(04):317-322. [18] Coffey AJ, Durkie M, Hague S, et al. A genetic study of Wilson's disease in the United Kingdom. Brain, 2013, 136(Pt 5):1476-1487. [19] Bandmann O, Weiss KH, Kaler SG. Wilson's disease and other neurological copper disorders. Lancet Neurol, 2015, 14(1):103-113. [20] Panagiotakaki E, Tzetis M, Manolaki N, et al. Genotype-phenotype correlations for a wide spectrum of mutations in the Wilson disease gene (ATP7B). Am J Med Genet A, 2004, 131(2):168-173. [21] Braiterman LT, Gupta A, Chaerkady R, et al. Communication between the N and C termini is required for copper-stimulated Ser/Thr phosphorylation of Cu(I)-ATPase (ATP7B). J Biol Chem, 2015, 290(14):8803-8819. [22] Guo Y, Nyasae L, Braiterman LT, et al. NH2-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells. Am J Physiol Gastrointest Liver Physiol, 2005, 289(5):G904-916. [23] Braiterman L, Nyasae L, Guo Y, et al. Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B. Am J Physiol Gastrointest Liver Physiol, 2009, 296(2):G433-444. [24] Guttmann S, Bernick F, Naorniakowska M, et al. Functional characterization of novel ATP7B variants for diagnosis of wilson disease. Front Pediatr. 2018, 6:106. [25] Jayakanthan S, Braiterman LT, Hasan NM, et al. Human copper transporter ATP7B (Wilson disease protein) forms stable dimers in vitro and in cells. J Biol Chem, 2017, 292(46):18760-18774. [26] Kumar R, Ariöz C, Li Y, Bosaeus N, et al. Wittung-Stafshede P. Disease-causing point-mutations in metal-binding domains of Wilson disease protein decrease stability and increase structural dynamics. Biometals, 2017, 30(1):27-35. [27] de Bie P, van de Sluis B, Burstein E, et al. Distinct Wilson's disease mutations in ATP7B are associated with enhanced binding to COMMD1 and reduced stability of ATP7B. Gastroenterology, 2007, 133(4):1316-1326. [28] Huster D, Kühne A, Bhattacharjee A, et al. Diverse functional properties of Wilson disease ATP7B variants. Gastroenterology, 2012, 142(4):947-956.e5. [29] Hasan NM, Gupta A, Polishchuk E, et al. Molecular events initiating exit of a copper-transporting ATPase ATP7B from the trans-Golgi network. J Biol Chem, 2012, 287(43):36041-36050. [30] Schushan M, Bhattacharjee A, Ben-Tal N, et al. A structural model of the copper ATPase ATP7B to facilitate analysis of Wilson disease-causing mutations and studies of the transport mechanism. Metallomics, 2012, 4(7):669-678. [31] Banci L, Bertini I, Cantini F, et al. Solution structures of the actuator domain of ATP7A and ATP7B, the Menkes and Wilson disease proteins. Biochemistry, 2009, 48(33):7849-7855. [32] Gupta A, Bhattacharjee A, Dmitriev OY, et al. Cellular copper levels determine the phenotype of the Arg875 variant of ATP7B/Wilson disease protein. Proc Natl Acad Sci U S A, 2011, 108(13):5390-5395. [33] Wang C, Zhou W, Huang Y, et al. Presumed missense and synonymous mutations in ATP7B gene cause exon skipping in Wilson disease. Liver Int, 2018, 38(8):1504-1513. [34] Yoo HW. Identification of novel mutations and the three most common mutations in the human ATP7B gene of Korean patients with Wilson disease. Genet Med, 2002 , 4(6 Suppl):43S-48S. [35] Dmitriev OY, Bhattacharjee A, Nokhrin S, et al. Difference in stability of the N-domain underlies distinct intracellular properties of the E1064A and H1069Q mutants of copper-transporting ATPase ATP7B. J Biol Chem, 2011, 286(18):16355-16362. [36] Chesi G, Hegde RN, Iacobacci S, et al. Identification of p38 MAPK and JNK as new targets for correction of Wilson disease-causing ATP7B mutants. Hepatology, 2016, 63(6):1842-1859. [37] Morgan CT, Tsivkovskii R, Kosinsky YA, et al. The distinct functional properties of the nucleotide-binding domain of ATP7B, the human copper-transporting ATPase: analysis of the Wilson disease mutations E1064A, H1069Q, R1151H, and C1104F. J Biol Chem, 2004, 279(35):36363-36371. [38] Braiterman LT, Murthy A, Jayakanthan S, et al. Distinct phenotype of a Wilson disease mutation reveals a novel trafficking determinant in the copper transporter ATP7B. Proc Natl Acad Sci U S A, 2014, 111(14):E1364-1373. [39] Lalioti V, Hernandez-Tiedra S, Sandoval IV. DKWSLLL, a versatile DXXXLL-type signal with distinct roles in the Cu(+)-regulated trafficking of ATP7B. Traffic, 2014, 15(8):839-860. [40] Prasad R, Kaur G, Kumar S, et al. Two novel mutations (2976INSA, 4311insA) of ATP7B in a patient with Wilson's disease coexisting with glucose-6-phosphate dehydrogenase deficiency. J Gastroenterol Hepatol, 2005, 20(4):660-662. [41] Majumdar R, Al Jumah M, Al Rajeh S, et al. A novel deletion mutation within the carboxyl terminus of the copper-transporting ATPase gene causes Wilson disease. J Neurol Sci, 2000, 179(S 1-2):140-143. [42] Cz?onkowska A, Gromadzka G, Chabik G. Monozygotic female twins discordant for phenotype of Wilson's disease. Mov Disord, 2009, 24(7):1066-1069. [43] Kieffer DA, Medici V. Wilson disease: At the crossroads between genetics and epigenetics-A review of the evidence. Liver Res, 2017, 1(2):121-130. [44] Schiefermeier M, Kollegger H, Madl C, et al. The impact of apolipoprotein E genotypes on age at onset of symptoms and phenotypic expression in Wilson's disease. Brain., 2000, 123 Pt 3:585-590. [45] Stuehler B, Reichert J, Stremmel W, et al. Analysis of the human homologue of the canine copper toxicosis gene MURR1 in Wilson disease patients. J Mol Med (Berl), 2004, 82(9):629-634. [46] Merle U, Stremmel W, Gessner R. Influence of homozygosity for methionine at codon 129 of the human prion gene on the onset of neurological and hepatic symptoms in Wilson disease. Arch Neurol, 2006, 63(7):982-985. [47] Weiss KH, Runz H, Noe B, et al. Genetic analysis of BIRC4/XIAP as a putative modifier gene of Wilson disease. J Inherit Metab Dis, 2010, 33 Suppl 3:S233-S240. [48] Gromadzka G, Rudnicka M, Chabik G, et al. Genetic variability in the methylenetetrahydrofolate reductase gene (MTHFR) affects clinical expression of Wilson's disease. J Hepatol, 2011, 55(4):913-919. [49] Gromadzka G, Kruszyńska M, Wierzbicka D, et al. Gene variants encoding proteins involved in antioxidant defense system and the clinical expression of Wilson disease. Liver Int, 2015, 35(1):215-222. [50] Kluska A, Kulecka M, Litwin T, et al. Whole-exome sequencing identifies novel pathogenic variants across the ATP7B gene and some modifiers of Wilson's disease phenotype. Liver Int, 2019, 39(1):177-186. [51] Zhou D, Jia S, Yi L, et al. Identification of potential modifier genes in Chinese patients with Wilson disease. Metallomics, 2022, 14(5):mfac024. [52] Kluska A, Kulecka M, Litwin T, et al. Whole-exome sequencing identifies novel pathogenic variants across the ATP7B gene and some modifiers of Wilson's disease phenotype. Liver Int, 2019, 39(1):177-186. [53] Medici V, Shibata NM, Kharbanda KK, et al. Wilson's disease: changes in methionine metabolism and inflammation affect global DNA methylation in early liver disease. Hepatology, 2013, 57(2):555-565. [54] Medici V, Shibata NM, Kharbanda KK, et al. Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease. Epigenetics, 2014, 9(2):286-296. |
[1] | 袁庆功, 张焱, 李军辉, 杨文彬. 纤连蛋白Ⅲ型结构域蛋白5对HepG2肝癌细胞体外转移活性的影响及其机制[J]. 肝脏, 2023, 28(8): 943-946. |
[2] | 侯淑惠, 邓晓玲, 次白, 徐可树. 尿酸参与代谢相关性脂肪性肝病发生、发展的分子机制研究进展[J]. 肝脏, 2023, 28(8): 990-993. |
[3] | 张朋垒, 张明婷, 郝礼森, 靳丽敏, 潘恩亮, 何宇, 苗笑佳, 王薇. 四氯化碳诱导的大鼠肝纤维化肝组织中SHP2表达与在体肝星状细胞活化及增殖的关系[J]. 肝脏, 2023, 28(5): 549-553. |
[4] | 李旋, 黄燕, 赵卫峰, 杨永峰, 甘建和. 以AFP升高为主要表现的成人Wilson病的临床和遗传学特征[J]. 肝脏, 2023, 28(5): 572-575. |
[5] | 郭丹丹, 张英华, 高文峰, 生守鹏, 张永宏. 肝豆状核变性相关原发性肝癌的临床特征分析[J]. 肝脏, 2023, 28(3): 290-292. |
[6] | 武丽娜, 孙丽莹, 朱志军, 王晓明, 王宇, 欧晓娟, 贾继东, 赵新颜. Alagille综合征的临床及病理特征分析[J]. 肝脏, 2023, 28(3): 351-354. |
[7] | 田亚文, 闫红林, 贺娜, 康改琳, 豆文丽, 赵梓棋, 孔繁娇, 任晫煦, 罗羽杉. 终末期肝病合并肌少症发生机制及干预防治研究进展[J]. 肝脏, 2023, 28(2): 253-256. |
[8] | 杨子新, 王胜兰. α-1抗胰蛋白酶缺乏症相关肝病的诊治研究进展[J]. 肝脏, 2022, 27(9): 959-962. |
[9] | 郝礼森, 杨小师, 张朋垒, 陈盼盼, 展宗媛, 何宇, 苗笑佳. 大鼠肝纤维化病理过程中肝组织SHP2表达与在体肝星状细胞凋亡的关系[J]. 肝脏, 2022, 27(4): 451-454. |
[10] | 程齐齐, 杨丽霞, 王亮, 孙俊, 梁佳圆, 葛善飞. 5个肝豆状核变性家系的临床特征及基因突变分析[J]. 肝脏, 2022, 27(3): 341-346. |
[11] | 高静雯, 刘晓琳, 朱锦舟, 许春芳. 非酒精性脂肪性肝病的病理改变及相关分子机制[J]. 肝脏, 2022, 27(2): 144-147. |
[12] | 秦旭, 侯志云, 张松, 马丽, 朝浩鹏. S基因突变对慢性乙型肝炎肝硬化患者血清AFP、PTX3表达及预后的影响[J]. 肝脏, 2022, 27(2): 178-181. |
[13] | 黄诗雯, 曾美惠. 原发性肝癌发生KRAS基因突变患者的超声特征及KRAS基因突变与淋巴结转移的相关性[J]. 肝脏, 2022, 27(12): 1280-1283. |
[14] | 章仁华, 江凯, 陈永莹. 44例肝豆状核变性患者临床特征、辅助检查结果及疗效评价[J]. 肝脏, 2022, 27(12): 1318-1321. |
[15] | 周俊, 贺学强, 熊红, 申秋艳, 黄应文, 莫春荣, 邓园园. 以乏力为表现的肝豆状核变性1例[J]. 肝脏, 2022, 27(11): 1247-1248. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||