[1] Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol, 2016, 36(3):301-312. [2] Whitford W, Guterstam P. Exosome manufacturing status. Future Med Chem, 2019, 11(10):1225-1236. [3] 杨永峰. 不明原因肝病诊断思路. 实用肝脏病杂志, 2018, 21(1): 1-3. [4] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science, 2020, 367(6478):eaau6977. [5] Chung IM, Rajakumar G, Venkidasamy B, et al. Exosomes: current use and future applications. Clin Chim Acta, 2020, 500:226-232. [6] Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem, 2019, 88:487-514. [7] Xu Z, Zeng S, Gong Z, et al. Exosome-based immunotherapy: a promising approach for cancer treatment. Mol Cancer, 2020, 19(1):160. [8] Guo M, Yin Z, Chen F, et al. Mesenchymal stem cell-derived exosome: a promising alternative in the therapy of Alzheimer's disease. Alzheimers Res Ther, 2020, 12(1):109. [9] Todd KV, Tripp RA. Exosome-mediated human norovirus infection. PLoS One, 2020, 15(8):e0237044. [10] Shen Z, Huang W, Liu J, et al. Effects of mesenchymal stem cell-derived exosomes on autoimmune diseases. Front Immunol, 2021, 12:749192. [11] Pape S, Schramm C, Gevers TJ. Clinical management of autoimmune hepatitis. United European Gastroenterol J, 2019, 7(9):1156-1163. [12] Lotfy A, Elgamal A, Burdzinska A, et al. Stem cell therapies for autoimmune hepatitis. Stem Cell Res Ther, 2021, 12(1):386. [13] Fu X, Liu G, Halim A, et al. Mesenchymal stem cell migration and tissue repair. Cells, 2019, 8(8):784. [14] Lou G, Chen Z, Zheng M, et al. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp Mol Med, 2017, 49(6):e346. [15] Chen L, Lu FB, Chen DZ, et al. BMSCs-derived miR-223-containing exosomes contribute to liver protection in experimental autoimmune hepatitis. Mol Immunol, 2018, 93:38-46. [16] Lu FB, Chen DZ, Chen L, et al. Attenuation of experimental autoimmune hepatitis in mice with bone mesenchymal stem cell-derived exosomes carrying microRNA-223-3p. Mol Cells, 2019, 42(12):906-918. [17] Zhao J, Li Y, Jia R, et al. Mesenchymal stem cells-derived exosomes as dexamethasone delivery vehicles for autoimmune hepatitis therapy. Front Bioeng Biotechnol, 2021, 9:650376. [18] Tsuneyama K, Baba H, Morimoto Y, et al. Primary biliary cholangitis: its pathological characteristics and immunopathological mechanisms. J Med Invest, 2017, 64(1.2):7-13. [19] Sarcognato S, Sacchi D, Grillo F, et al. Autoimmune biliary diseases: primary biliary cholangitis and primary sclerosing cholangitis. Pathologica, 2021, 113(3):170-184. [20] Tomiyama T, Yang GX, Zhao M, et al. The modulation of co-stimulatory molecules by circulating exosomes in primary biliary cirrhosis. Cell Mol Immunol, 2017, 14(3):276-284. [21] Liu R, Li X, Zhu W, et al. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes hepatic stellate cell activation and cholestatic liver fibrosis. Hepatology, 2019, 70(4):1317-1335. [22] Chen W, Zhu J, Lin F, et al. Human placenta mesenchymal stem cell-derived exosomes delay H2O2-induced aging in mouse cholangioids. Stem Cell Res Ther, 2021, 12(1):201. [23] Garcia-Cortes M, Robles-Diaz M, Stephens C, et al. Drug induced liver injury: an update. Arch Toxicol, 2020, 94(10):3381-3407. [24] Holman NS, Mosedale M, Wolf KK, et al. Subtoxic alterations in hepatocyte-derived exosomes: an early step in drug-induced liver injury? Toxicol Sci, 2016, 151(2):365-375. [25] Cho YE, Kim SH, Lee BH, et al. Circulating plasma and exosomal micrornas as indicators of drug-induced organ injury in rodent models. Biomol Ther (Seoul), 2017, 25(4):367-373. [26] Zheng J, Yu L, Chen W, et al. Circulating exosomal microRNAs reveal the mechanism of Fructus Meliae Toosendan-induced liver injury in mice. Sci Rep, 2018, 8(1):2832. [27] Royo F, Schlangen K, Palomo L, et al. Transcriptome of extracellular vesicles released by hepatocytes. PLoS One, 2013, 8(7):e68693. [28] Yang X, Weng Z, Mendrick DL,et al. Circulating extracellular vesicles as a potential source of new biomarkers of drug-induced liver injury. Toxicol Lett, 2014, 225(3):401-406. [29] Cho YE, Im EJ, Moon PG, et al. Increased liver-specific proteins in circulating extracellular vesicles as potential biomarkers for drug- and alcohol-induced liver injury. PLoS One, 2017, 12(2):e0172463. [30] Zhao L, Wang Y, Zhang Y. The potential diagnostic and therapeutic applications of exosomes in drug-induced liver injury. Toxicol Lett, 2021, 337:68-77. [31] Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther, 2014, 5(3):76. [32] Holman NS, Church RJ, Nautiyal M, et al. Hepatocyte-derived exosomes promote liver immune tolerance: possible implications for idiosyncratic drug-induced liver injury. Toxicol Sci, 2019, 170(2):499-508. [33] Younossi Z, Tacke F, Arrese M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology, 2019, 69(6):2672-2682. [34] Wang W, Zhu N, Yan T, et al. The crosstalk: exosomes and lipid metabolism. Cell Commun Signal, 2020, 18(1):119. [35] Li Y, Luan Y, Li J, et al. Exosomal miR-199a-5p promotes hepatic lipid accumulation by modulating MST1 expression and fatty acid metabolism. Hepatol Int, 2020, 14(6):1057-1074. [36] Yan C, Tian X, Li J, et al. A high-fat diet attenuates AMPK α1 in adipocytes to induce exosome shedding and nonalcoholic fatty liver development in vivo. Diabetes, 2021, 70(2):577-588. [37] Liu XL, Pan Q, Cao HX, et al. Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through Rictor/Akt/Forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease. Hepatology, 2020 , 72(2):454-469. [38] Zhao Z, Zhong L, Li P, et al. Cholesterol impairs hepatocyte lysosomal function causing M1 polarization of macrophages via exosomal miR-122-5p. Exp Cell Res, 2020, 387(1):111738. [39] Gu H, Yang K, Shen Z, et al. ER stress-induced adipocytes secrete-aldo-keto reductase 1b7-containing exosomes that cause nonalcoholic steatohepatitis in mice. Free Radic Biol Med, 2021, 163:220-233. [40] Hou X, Yin S, Ren R, et al. Myeloid-cell-specific IL-6 signaling promotes microRNA-223-enriched exosome production to attenuate NAFLD-associated fibrosis. Hepatology, 2021, 74(1):116-132. |