[1] Trefts E, Gannon M, Wasserman DH. The liver. Curr Biol, 2017,27(21):R1147-R1151. [2] Sarin SK, Kumar M, Eslam M, et al. Liver diseases in the Asia-Pacific region: a Lancet Gastroenterology & Hepatology Commission. Lancet Gastroenterol Hepatol, 2020,5(2):167-228. [3] Dioguardi Burgio M, Bruno O, Agnello F, et al. The cheating liver: imaging of focal steatosis and fatty sparing. Expert Rev Gastroenterol Hepatol, 2016,10(6):671-678. [4] Lafata KJ, Wang Y, Konkel B, et al. Radiomics: a primer on high-throughput image phenotyping. Abdom Radiol (NY), 2022,47(9):2986-3002. [5] Zhang X, Zhang Y, Zhang G, et al. Deep learning with radiomics for disease diagnosis and treatment: challenges and potential. Front Oncol, 2022,12:773840. [6] Kim YK, Kwon OS, Her KH. The grade of nonalcoholic fatty liver disease is an independent risk factor for gallstone disease: an observational study. Medicine (Baltimore), 2019,98(27):e16018. [7] Zhou J, Zhou F, Wang W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China. Hepatology, 2020,71(5):1851-1864. [8] Nassir F. NAFLD: Mechanisms, treatments, and biomarkers. Biomolecules, 2022,12(6):824. [9] Chen ZW, Xiao HM, Ye X, et al. A novel radiomics signature based on T2-weighted imaging accurately predicts hepatic inflammation in individuals with biopsy-proven nonalcoholic fatty liver disease: a derivation and independent validation study. Hepatobiliary Surg Nutr, 2022,11(2):212-226. [10] Sim KC, Kim MJ, Cho Y, et al. Radiomics analysis of magnetic resonance proton density fat fraction for the diagnosis of hepatic steatosis in patients with suspected non-alcoholic fatty liver disease. J Korean Med Sci, 2022,37(49):e339. [11] Costa G, Cavinato L, Masci C, et al. Virtual biopsy for diagnosis of chemotherapy-associated liver injuries and steatohepatitis: a combined radiomic and clinical model in patients with colorectal liver metastases. Cancers (Basel), 2021,13(12):3077. [12] Yao L, Hu X, Dai K, et al. Mesenchymal stromal cells: promising treatment for liver cirrhosis. Stem Cell Res Ther, 2022,13(1):308. [13] Soon G, Wee A. Updates in the quantitative assessment of liver fibrosis for nonalcoholic fatty liver disease: histological perspective. Clin Mol Hepatol, 2021,27(1):44-57. [14] Khan S, Saxena R. Regression of hepatic fibrosis and evolution of cirrhosis: a concise review. Adv Anat Pathol, 2021,28(6):408-414. [15] Vernuccio F, Cannella R, Bartolotta TV, et al. Advances in liver US, CT, and MRI: moving toward the future. Eur Radiol Exp, 2021,5(1):52. [16] Duan YY, Qin J, Qiu WQ, et al. Performance of a generative adversarial network using ultrasound images to stage liver fibrosis and predict cirrhosis based on a deep-learning radiomics nomogram. Clin Radiol, 2022,77(10):e723-e731. [17] Wang J, Tang S, Mao Y, et al. Radiomics analysis of contrast-enhanced CT for staging liver fibrosis: an update for image biomarker. Hepatol Int, 2022,16(3):627-639. [18] Sim KC, Kim MJ, Cho Y, et al. Diagnostic feasibility of magnetic resonance elastography radiomics analysis for the assessment of hepatic fibrosis in patients with nonalcoholic fatty liver disease. J Comput Assist Tomogr, 2022,46(4):505-513. [19] Zheng R, Shi C, Wang C, et al. Imaging-based staging of hepatic fibrosis in patients with hepatitis B: a dynamic radiomics model based on Gd-EOB-DTPA-enhanced MRI. Biomolecules, 2021,11(2):307. [20] Dana J, Venkatasamy A, Saviano A, et al. Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease. Hepatol Int, 2022,16(3):509-522. [21] Sack J, Nitsch J, Meine H, et al. Quantitative analysis of liver disease using MRI-based radiomic features of the liver and spleen. J Imaging, 2022,8(10):277. [22] Nitsch J, Sack J, Halle MW, et al. MRI-based radiomic feature analysis of end-stage liver disease for severity stratification. Int J Comput Assist Radiol Surg, 2021,16(3):457-466. [23] Qiu QT, Zhang J, Duan JH, et al. Development and validation of radiomics model built by incorporating machine learning for identifying liver fibrosis and early-stage cirrhosis. Chin Med J (Engl), 2020,133(22):2653-2659. [24] Ginès P, Krag A, Abraldes JG, et al. Liver cirrhosis. Lancet, 2021,398(10308):1359-1376. [25] 王继涛, 祁小龙. 肝静脉压力梯度在肝硬化外科手术中的应用现状及前景. 中华消化外科杂志,2021,20(10):1113-1116. [26] Liu F, Ning Z, Liu Y, et al. Development and validation of a radiomics signature for clinically significant portal hypertension in cirrhosis (CHESS1701): a prospective multicenter study. EBioMedicine, 2018,36:151-158. [27] Yu Q, Huang Y, Li X, et al. An imaging-based artificial intelligence model for non-invasive grading of hepatic venous pressure gradient in cirrhotic portal hypertension. Cell Rep Med, 2022,3(3):100563. [28] Pfisterer N, Unger LW, Reiberger T. Clinical algorithms for the prevention of variceal bleeding and rebleeding in patients with liver cirrhosis. World J Hepatol, 2021,13(7):731-746. [29] Alqahtani SA, Jang S. Pathophysiology and management of variceal bleeding. Drugs, 2021,81(6):647-667. [30] Garcia-Tsao G, Bosch J. Management of varices and variceal hemorrhage in cirrhosis. N Engl J Med, 2010,362(9):823-832. [31] Garcia-Tsao G, Abraldes JG, Berzigotti A, et al. Portal hypertensive bleeding in cirrhosis: Risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the study of liver diseases. Hepatology, 2017,65(1):310-335. [32] Yan Y, Li Y, Fan C, et al. A novel machine learning-based radiomic model for diagnosing high bleeding risk esophageal varices in cirrhotic patients. Hepatol Int, 2022,16(2):423-432. [33] Meng D, Wei Y, Feng X, et al. CT-based radiomics score can accurately predict esophageal variceal rebleeding in cirrhotic patients. Front Med (Lausanne), 2021,8:745931. [34] Rudler M, Weiss N, Bouzbib C, et al. Diagnosis and management of hepatic encephalopathy. Clin Liver Dis, 2021,25(2):393-417. [35] Luo S, Zhou ZM, Guo DJ, et al. Radiomics-based classification models for HBV-related cirrhotic patients with covert hepatic encephalopathy. Brain Behav, 2021,11(2):e01970. [36] Sparacia G, Parla G, Cannella R, et al. Brain magnetic resonance imaging radiomics features associated with hepatic encephalopathy in adult cirrhotic patients. Neuroradiology, 2022,64(10):1969-1978. [37] Hofmann J, Hackl V, Esser H, et al. Cell-based regeneration and treatment of liver diseases. Int J Mol Sci, 2021,22(19):10276. [38] 张喆, 李民, 赵丽琴,等. 基于CT影像组学特征评估肝硬化患者肝脏储备功能. CT理论与应用研究,2022,31(1):55-62. [39] 周玮, 胡红杰, 沈博,等. 基于钆塞酸二钠增强磁共振成像影像组学定量评估肝硬化患者肝脏储备功能的应用价值. 中国医学科学院学报,2020,42(4):459-467. [40] Wu J, Xie F, Ji H, et al. A clinical-radiomic model for predicting indocyanine green retention rate at 15 min in patients with hepatocellular carcinoma. Front Surg, 2022,9:857838. [41] Ghasemirad H, Bazargan N, Shahesmaeili A, et al. Echinococcosis in immunocompromised patients: a systematic review. Acta Trop, 2022,232:106490. [42] Bresson-Hadni S, Spahr L, Chappuis F. Hepatic alveolar echinococcosis. Semin Liver Dis, 2021,41(3):393-408. [43] 张旭辉, 索朗拉姆, 邱甲军,等. 基于超声影像组学建立肝棘球蚴病分型模型的可行性研究. 中国血吸虫病防治杂志,2022,34(5):500-506+536. [44] Ren B, Wang J, Miao Z, et al. Hepatic alveolar echinococcosis: predictive biological activity based on radiomics of MRI. Biomed Res Int, 2021,2021:6681092. [45] 樊霞, 王健, 夏雨薇,等. 基于MRI影像组学预测肝泡型包虫病边缘微血管侵犯. 中国医学影像技术,2021,37(12):1849-1853. |