[1] Rinella M E, Neuschwander-Tetri B A, Siddiqui M S, et al. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease[J]. Hepatology, 2023, 77(5): 1797-1835. [2] Younossi Z M, Golabi P, Paik J M, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review[J]. Hepatology, 2023, 77(4): 1335-1347. [3] Le M H, Yeo Y H, Li X, et al. 2019 Global NAFLD Prevalence: a systematic review and meta-analysis[J]. Clin Gastroenterol Hepatol, 2022, 20(12): 2809-2817. [4] 中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志, 2018, 34(5): 947-957. [5] Eslam M, Sanyal A J, George J. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease[J]. Gastroenterology, 2020, 158(7): 1999-2014. [6] Eslam M, Newsome P N, Sarin S K, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement[J]. J Hepatol, 2020, 73(1): 202-209. [7] Rinella M E, Lazarus J V, Ratziu V, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature[J]. Hepatology, 2023. [8] Wang S, Zhang C, Zhang G, et al. Association between white blood cell count and non-alcoholic fatty liver disease in urban Han Chinese: a prospective cohort study[J]. BMJ Open, 2016, 6(6): e10342. [9] Chung G E, Yim J Y, Kim D, et al. Associations between white blood cell count and the development of incidental nonalcoholic fatty liver disease[J]. Gastroenterol Res Pract, 2016, 2016: 7653689. [10] Wu L, Gao X, Guo Q, et al. The role of neutrophils in innate immunity-driven nonalcoholic steatohepatitis: lessons learned and future promise[J]. Hepatol Int, 2020, 14(5): 652-666. [11] Shavakhi M, Nourigheimasi S, Dioso E, et al. Prognostic role of neutrophil to lymphocyte ratio in nonalcoholic fatty liver disease: a systematic review and meta-analysis[J]. Can J Gastroenterol Hepatol, 2022, 2022: 1554079. [12] Peng Y, Li Y, He Y, et al. The role of neutrophil to lymphocyte ratio for the assessment of liver fibrosis and cirrhosis: a systematic review[J]. Expert Rev Gastroenterol Hepatol, 2018, 12(5): 503-513. [13] Thibaut R, Gage M C, Pineda-Torra I, et al. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease[J]. FEBS J, 2022, 289(11): 3024-3057. [14] Kim H L, Chung G E, Park I Y, et al. Elevated peripheral blood monocyte fraction in nonalcoholic fatty liver disease[J]. Tohoku J Exp Med, 2011, 223(3): 227-233. [15] Wang Y, Oeztuerk S, Kratzer W, et al. A nonclassical monocyte phenotype in peripheral blood is associated with nonalcoholic fatty liver disease: a report from an EMIL subcohort[J]. Horm Metab Res, 2016, 48(1): 54-61. [16] Park J W, Jeong G, Kim S J, et al. Predictors reflecting the pathological severity of non-alcoholic fatty liver disease: comprehensive study of clinical and immunohistochemical findings in younger Asian patients[J]. J Gastroenterol Hepatol, 2007, 22(4): 491-497. [17] Baeck C, Wehr A, Karlmark K R, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury[J]. Gut, 2012, 61(3): 416-426. [18] Thibaut R, Gage M C, Pineda-Torra I, et al. Liver macrophages and inflammation in physiology and physiopathology of non-alcoholic fatty liver disease[J]. FEBS J, 2022, 289(11): 3024-3057. [19] Reid D T, Reyes J L, Mcdonald B A, et al. Kupffer cells undergo fundamental changes during the development of experimental NASH and are critical in initiating liver damage and inflammation[J]. PLoS One, 2016, 11(7): e159524. [20] Huang W, Metlakunta A, Dedousis N, et al. Depletion of liver Kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance[J]. Diabetes, 2010, 59(2): 347-357. [21] Krenkel O, Puengel T, Govaere O, et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis[J]. Hepatology, 2018, 67(4): 1270-1283. [22] Baeck C, Wehr A, Karlmark K R, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury[J]. Gut, 2012, 61(3): 416-426. [23] Barrow F, Khan S, Fredrickson G, et al. Microbiota-driven activation of intrahepatic B cells aggravates NASH through innate and adaptive signaling[J]. Hepatology, 2021, 74(2): 704-722. [24] Winer D A, Winer S, Shen L, et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies[J]. Nat Med, 2011, 17(5): 610-617. [25] Wu Z, Xu J, Tan J, et al. Mesenteric adipose tissue B lymphocytes promote local and hepatic inflammation in non-alcoholic fatty liver disease mice[J]. J Cell Mol Med, 2019, 23(5): 3375-3385. [26] Nishimura S, Manabe I, Takaki S, et al. Adipose natural regulatory B cells negatively control adipose tissue inflammation[J]. Cell Metab, 2013, 18(5): 759-766. [27] Barrow F, Revelo X S. The B side of B cells in NAFLD[J]. Hepatology, 2022, 76(4): 914-916. [28] Pfister D, Nunez N G, Pinyol R, et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC[J]. Nature, 2021, 592(7854): 450-456. [29] O′Leary K. T cell drivers in NASH-HCC[J]. Nat Rev Cancer, 2021, 21(6): 341. [30] Dudek M, Pfister D, Donakonda S, et al. Auto-aggressive CXCR6(+) CD8 T cells cause liver immune pathology in NASH[J]. Nature, 2021, 592(7854): 444-449. |