肝脏 ›› 2024, Vol. 29 ›› Issue (5): 609-613.
张锦华, 张家祺, 张立超
收稿日期:
2023-12-07
出版日期:
2024-05-31
发布日期:
2024-08-28
通讯作者:
张家祺,Email:zhangjiaqi@shutcm.edu.cn
基金资助:
Received:
2023-12-07
Online:
2024-05-31
Published:
2024-08-28
摘要: 对乙酰氨基酚(acetaminophen,APAP)也被称为扑热息痛,可用于治疗发热、疼痛和炎症。而过量服用对乙酰氨基酚会导致急性肝功能衰竭,甚至需要肝移植。目前临床治疗APAP导致的肝损伤是给予N-乙酰半胱氨酸(N-acetyl-L-cysteine,NAC),通过补充肝细胞内谷胱甘肽(glutathione,GSH)储存发挥保肝的作用。黄酮类化合物(flavonoids)是一类大量存在于食物和中药中的单体,可以通过恢复细胞的抗氧化防御系统、限制氧化应激、改善炎症、减轻坏死细胞死亡等来保护APAP诱导的肝毒性。本文针对黄酮类化合物减轻APAP引起肝毒性作用的分子机制和相关靶点的研究进展进行综述。
张锦华, 张家祺, 张立超. 黄酮类化合物对对乙酰氨基酚诱导肝损伤的保护作用[J]. 肝脏, 2024, 29(5): 609-613.
[1] Chidiac A S, Buckley N A, Noghrehchi F, et al. Paracetamol (acetaminophen) overdose and hepatotoxicity: mechanism, treatment, prevention measures, and estimates of burden of disease[J]. Expert Opin Drug Metab Toxicol, 2023, 19(5): 297-317. [2] Sivilotti M, Yarema M C, Juurlink D N. Treating acetaminophen overdose[J]. CMAJ, 2022, 194(15): E554. [3] Luo G, Huang L, Zhang Z. The molecular mechanisms of acetaminophen-induced hepatotoxicity and its potential therapeutic targets[J]. Exp Biol Med (Maywood), 2023, 248(5): 412-424. [4] Bhushan B, Apte U. Liver regeneration after acetaminophen hepatotoxicity: mechanisms and therapeutic opportunities[J]. Am J Pathol, 2019, 189(4): 719-729. [5] Stulb H, Bachmann M, Gonther S, et al. Acetaminophen-induced liver injury exposes murine IL-22 as sex-related gene product[J]. Int J Mol Sci, 2021, 22(19):10623. [6] Xiong C, Jia Y, Wu X, et al. Early Postoperative Acetaminophen Administration and Severe Acute Kidney Injury After Cardiac Surgery[J]. Am J Kidney Dis, 2023, 81(6): 675-683 e1. [7] 冯艺飞, 王笑颖. 黄酮类化合物的研究概况[J]. 江西化工, 2021, 37(04): 102-4. [8] Gupta M, Ahmad J, Ahamad J, et al. Flavonoids as promising anticancer therapeutics: contemporary research, nanoantioxidant potential, and future scope[J]. Phytother Res, 2023, 37(11): 5159-5192. [9] Boniface P K, Fabrice F B, Paumo H K, et al. Protective roles and mechanism of action of plant flavonoids against hepatic impairment: recent developments[J]. Curr Drug Targets, 2023, 24(4): 332-360. [10] Atwi-ghaddar S, Zerwette L, Destandau E, et al. Exploring the sequential-selective supercritical fluid extraction (S(3)FE) of flavonoids and esterified triterpenoids from calendula officinalis L. flowers[J]. Molecules, 2023, 28(20):7060. [11] Zhang H, Zheng W, Feng X, et al. Nrf2-ARE signaling acts as master pathway for the cellular antioxidant activity of fisetin[J]. Molecules, 2019, 24(4):708. [12] AL-Khayri J M, Sahana G R, Nagella P, et al. Flavonoids as potential anti-inflammatory molecules: a review[J]. Molecules, 2022, 27(9):2901. [13] Shan S, Shen Z, Zhang C, et al. Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation[J]. Biochem Pharmacol, 2019, 169: 113643. [14] Malla A M, Dar B A, Isaev A B, et al. Flavonoids: a reservoir of drugs from nature[J]. Mini Rev Med Chem, 2023, 23(7): 772-786. [15] 陈玲, 龚先琼. 中药单体减轻对乙酰氨基酚诱导肝损伤的研究[J]. 医学信息, 2021, 34(15): 1-4. [16] Chariyakornkul A, Juengwiroj W, Ruangsuriya J, et al. Antioxidant extract from cleistocalyx nervosum var. paniala pulp ameliorates acetaminophen-induced acute hepatotoxicity in rats[J]. Molecules, 2022, 27(2):553. [17] 乞振兰, 王梓, 李伟, 等. 人参果花青素对对乙酰氨基酚致小鼠肝损伤的保护作用[J]. 中草药, 2017, 48(13): 2704-2710. [18] Choi J H, Choi C Y, Lee K J, et al. Hepatoprotective effects of an anthocyanin fraction from purple-fleshed sweet potato against acetaminophen-induced liver damage in mice[J]. J Med Food, 2009, 12(2): 320-326. [19] Seo M, Kim H, Lee J H, et al. Pelargonidin ameliorates acetaminophen-induced hepatotoxicity in mice by inhibiting the ROS-induced inflammatory apoptotic response[J]. Biochimie, 2020, 168: 10-16. [20] Wang W, Li J, Wang Z, et al. Oral hepatoprotective ability evaluation of purple sweet potato anthocyanins on acute and chronic chemical liver injuries[J]. Cell Biochem Biophys, 2014, 69(3): 539-548. [21] Deng X, Li Y, Li X, et al. Paeoniflorin protects against acetaminophen-induced liver injury in mice via JNK signaling pathway[J]. Molecules, 2022, 27(23):8534. [22] Yang J, Wang X Y, Xue J, et al. Protective effect of apigenin on mouse acute liver injury induced by acetaminophen is associated with increment of hepatic glutathione reductase activity[J]. Food Funct, 2013, 4(6): 939-943. [23] Zhang J, Liang X, Li J, et al. Apigenin attenuates acetaminophen-induced hepatotoxicity by activating AMP-activated protein kinase/carnitine palmitoyltransferase I pathway[J]. Front Pharmacol, 2020, 11(1858):549057. [24] Li H, Weng Q, Gong S, et al. Kaempferol prevents acetaminophen-induced liver injury by suppressing hepatocyte ferroptosis via Nrf2 pathway activation[J]. Food Funct, 2023, 14(4): 1884-1896. [25] Binmowyna M N, Alfaris N A. Kaempferol suppresses acetaminophen-induced liver damage by upregulation/activation of SIRT1[J]. Pharm Biol, 2021, 59(1): 146-156. [26] Tsai M S, Chien C C, Lin T H, et al. Galangin prevents acute hepatorenal toxicity in novel propacetamol-induced acetaminophen-overdosed mice[J]. J Med Food, 2015, 18(11): 1187-1197. [27] Mohammadi A, Kazemi S, Molayousefian I, et al. Galangin nanoparticles protect acetaminophen-induced liver injury: a biochemical and histopathological approach[J]. Evid Based Complement Alternat Med, 2022, 2022: 4619064. [28] Wan J, Kuang G, Zhang L, et al. Hesperetin attenuated acetaminophen-induced hepatotoxicity by inhibiting hepatocyte necrosis and apoptosis, oxidative stress and inflammatory response via upregulation of heme oxygenase-1 expression[J]. Int Immunopharmacol, 2020, 83: 106435. [29] Eldin D N, Fahim H I, Ahmed H Y, et al. Preventive effects of mandarin fruit peel hydroethanolic extract, hesperidin, and quercetin on acetaminophen-induced hepatonephrotoxicity in wistar rats[J]. Oxid Med Cell Longev, 2022, 2022: 7065845. [30] Saidurrahman M, Mujahid M, Siddiqui M A, et al. Evaluation of hepatoprotective activity of ethanolic extract of Pterocarpus marsupium Roxb. leaves against paracetamol-induced liver damage via reduction of oxidative stress[J]. Phytomedicine Plus, 2022, 2(3): 100311. [31] Liu L, Zhou L, Wang C, et al. Novel pterostilbene-loaded pro-phytomicelles: preclinical pharmacokinetics, distribution, and treatment efficacy against acetaminophen-induced liver injury[J]. Food Funct, 2022, 13(19): 9868-9877. [32] Thakur K, Zhu Y Y, Feng J Y, et al. Morin as an imminent functional food ingredient: an update on its enhanced efficacy in the treatment and prevention of metabolic syndromes[J]. Food Funct, 2020, 11(10): 8424-8443. [33] EL Sayed NF, Abdallah DM, Awad AS, et al. Novel peripheral role of Nurr-1/GDNF/AKT trajectory in carvedilol and/or morin hydrate hepatoprotective effect in a model of hepatic ischemia/reperfusion[J]. Life Sci, 2021, 273: 119235. [34] Lu R, Yu R J, Yang C, et al. Evaluation of the hepatoprotective effect of naringenin loaded nanoparticles against acetaminophen overdose toxicity[J]. Drug Deliv, 2022, 29(1): 3256-3269. [35] Wu Q, Yu P, Bi Y, et al. Naringin regulates mitochondrial dynamics to protect against acetaminophen-induced hepatotoxicity by activating the AMPK/Nrf2 signaling pathway in vitro[J]. Braz J Med Biol Res, 2022, 55: e12040. [36] Zhai X, Dai T, Chi Z, et al. Naringin alleviates acetaminophen-induced acute liver injury by activating Nrf2 via CHAC2 upregulation[J]. Environ Toxicol, 2022, 37(6): 1332-1342. [37] 郑艺, 李慧, 吴进, 等. 地肤子总黄酮对对乙酰氨基酚所致小鼠急性肝损伤的保护作用[J]. 中国医药导报, 2022, 19(01): 23-26. [38] 李阳杰, 姜亚玲, 刘秋伟, 等. 槲皮素衍生物的生物活性研究进展[J]. 中国药学杂志, 2021, 56(03): 175-80. [39] Gilani A H, Janbaz K H, Shah B H. Quercetin exhibits hepatoprotective activity in rats[J]. Biochem Soc Trans, 1997, 25(4): S619. [40] AL Humayed S, AL-Ani B, EL Karib A O, et al. Suppression of acetaminophen-induced hepatocyte ultrastructural alterations in rats using a combination of resveratrol and quercetin[J]. Ultrastruct Pathol, 2019, 43(4-5): 162-169. [41] Dallak M, Dawood A F, Haidara M A, et al. Suppression of glomerular damage and apoptosis and biomarkers of acute kidney injury induced by acetaminophen toxicity using a combination of resveratrol and quercetin[J]. Drug Chem Toxicol, 2022, 45(1): 1-7. [42] Yousef M I, Omar S A, EL-Guendi M I, et al. Potential protective effects of quercetin and curcumin on paracetamol-induced histological changes, oxidative stress, impaired liver and kidney functions and haematotoxicity in rat[J]. Food Chem Toxicol, 2010, 48(11): 3246-3261. [43] Ji L L, Sheng Y C, Zheng Z Y, et al. The involvement of p62-Keap1-Nrf2 antioxidative signaling pathway and JNK in the protection of natural flavonoid quercetin against hepatotoxicity[J]. Free Radic Biol Med, 2015, 85: 12-23. [44] Hu C, Chen Y, Cao Y, et al. Metabolomics analysis reveals the protective effect of quercetin-3-O-galactoside (Hyperoside) on liver injury in mice induced by acetaminophen[J]. J Food Biochem, 2020: e13420. [45] Tai M, Zhang J, Song S, et al. Protective effects of luteolin against acetaminophen-induced acute liver failure in mouse[J]. Int Immunopharmacol, 2015, 27(1): 164-170. [46] Song K, Zhou L, Wang C, et al. Novel luteolin@pro-phytomicelles: In vitro characterization and in vivo evaluation of protection against drug-induced hepatotoxicity[J]. Chem Biol Interact, 2022, 365: 110095. [47] Shi L, Hao Z, Zhang S, et al. Baicalein and baicalin alleviate acetaminophen-induced liver injury by activating Nrf2 antioxidative pathway: The involvement of ERK1/2 and PKC[J]. Biochem Pharmacol, 2018, 150: 9-23. [48] Zhou H C, Wang H, Shi K, et al. Hepatoprotective effect of baicalein against acetaminophen-induced acute liver injury in mice[J]. Molecules, 2018, 24(1):131. [49] Zeng Y, Wu R, Wang F, et al. Liberation of daidzein by gut microbial beta-galactosidase suppresses acetaminophen-induced hepatotoxicity in mice[J]. Cell Host Microbe, 2023, 31(5): 766-780 e7. |
[1] | 方青青, 李锋, 陈世耀, 陈颖. 肝硬化急性失代偿的机制研究与争议[J]. 肝脏, 2024, 29(7): 766-769. |
[2] | 岳贇, 马丽, 王卫国. 学龄前儿童传染性单核细胞增多症合并肝功能异常的临床特征及影响因素[J]. 肝脏, 2024, 29(7): 852-856. |
[3] | 朱学河, 武杰. 塑化剂邻苯二甲酸酯暴露诱导活性氧水平升高对大鼠肝脏的毒性作用[J]. 肝脏, 2024, 29(6): 719-724. |
[4] | 马嘉蹊, 程浩, 姚甜甜, 刘丹, 张宇涵, 杜思源, 董琳菲, 胡林慧, 王艳, 王贵强. 药物性肝损伤评估量表诊断价值研究进展[J]. 肝脏, 2024, 29(6): 748-750. |
[5] | 刘茹佳, 辛小娟. 166例药物性肝损伤临床特征和用药史分析[J]. 肝脏, 2024, 29(5): 545-551. |
[6] | 张昭君, 刘跃. 抗结核药物性肝损伤患者急性肝功能衰竭的影响因素分析[J]. 肝脏, 2024, 29(5): 552-556. |
[7] | 李兰亚, 屠涛, 孙志堂. 药物性肝损伤患者血清IL-6、TNF-α、IL-10水平与肝损伤程度的关系[J]. 肝脏, 2024, 29(5): 557-560. |
[8] | 秦攸余, 邓巧妮. 腺病毒相关肝损伤患儿的临床特征及其影响因素[J]. 肝脏, 2024, 29(5): 576-580. |
[9] | 何国庆, 储开东. MLR、CD4+/CD8+和APRI检测对传染性单核细胞增多症合并肝损伤患儿病情和预后的评估价值[J]. 肝脏, 2024, 29(5): 581-587. |
[10] | 马文军, 曲相珍, 周静亚, 马维娜, 李宏韬. 慢性药物性肝损伤患者自身抗体特征及其影响预后的因素分析[J]. 肝脏, 2024, 29(4): 453-456. |
[11] | 陈智峰, 邵挥戈, 谢开汉. 甲状腺功能亢进合并肝损伤的临床特征[J]. 肝脏, 2024, 29(4): 457-460. |
[12] | 颜敏, 肖丽. 血清细胞角蛋白18在慢性肝脏疾病中的应用[J]. 肝脏, 2024, 29(4): 475-478. |
[13] | 徐丹, 朱传龙. 血清尿酸水平对肝损伤预后的研究进展[J]. 肝脏, 2024, 29(4): 482-485. |
[14] | 林维佳, 陆伟, 王雁冰, 张占卿. 基于血清抗-HBc定量建立慢性HBV感染者显著肝组织病理学改变的无创诊断模型[J]. 肝脏, 2024, 29(3): 278-284. |
[15] | 周金锋, 陈俊杰, 詹宝滨. HBV相关肝细胞癌患者放射性肝损伤的影响因素[J]. 肝脏, 2024, 29(2): 193-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||