[1] Monteiro S, Grandt J, Uschner F E, et al. Differential inflammasome activation predisposes to acute-on-chronic liver failure in human and experimental cirrhosis with and without previous decompensation [J]. Gut, 2021, 70(2): 379-387. [2] Hernaez R, Solà E, Moreau R, et al. Acute-on-chronic liver failure: an update [J]. Gut, 2017, 66(3): 541-553. [3] Moreau R. The Pathogenesis of ACLF: The Inflammatory Response and Immune Function [J]. Semin Liver Dis, 2016, 36(2): 133-140. [4] Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system [J]. Nat Immunol, 2015, 16(4): 343-353. [5] Sharma A, Roy A, Premkumar M, et al. Fecal microbiota transplantation in alcohol-associated acute-on-chronic liver failure: an open-label clinical trial [J]. Hepatol Int, 2022, 16(2): 433-446. [6] Sundaram V, Jalan R, Ahn J C, et al. Class III obesity is a risk factor for the development of acute-on-chronic liver failure in patients with decompensated cirrhosis [J]. J Hepatol, 2018, 69(3): 617-625. [7] Ellulu M S, Patimah I, Khaza'Ai H, et al. Obesity and inflammation: the linking mechanism and the complications [J]. Arch Med Sci, 2017, 13(4): 851-863. [8] Shaikh S R, Beck M A, Alwarawrah Y, et al. Emerging mechanisms of obesity-associated immune dysfunction [J]. Nat Rev Endocrinol, 2024, 20(3): 136-148. [9] Lu X, Kong X, Wu H, et al. UBE2M-mediated neddylation of TRIM21 regulates obesity-induced inflammation and metabolic disorders [J]. Cell Metab, 2023, 35(8): 1390-405.e8. [10] Acciarino A, Diwakarla S, Handreck J, et al. The role of the gastrointestinal barrier in obesity-associated systemic inflammation [J]. Obes Rev, 2024, 25(3): e13673. [11] Wu W, Sun S, Wang Y, et al. Circulating Neutrophil Dysfunction in HBV-Related Acute-on-Chronic Liver Failure [J]. Front Immunol, 2021, 12(620365. [12] Engelmann C, Sheikh M, Sharma S, et al. Toll-like receptor 4 is a therapeutic target for prevention and treatment of liver failure [J]. J Hepatol, 2020, 73(1): 102-112. [13] Zhang Y, Wu W, Wang Y, et al. Gene profiling of Toll-like receptor signalling pathways in neutrophils of patients with acute-on-chronic liver failure [J]. J Transl Med, 2021, 19(1): 465. [14] Bernsmeier C, Triantafyllou E, Brenig R, et al. CD14(+) CD15(-) HLA-DR(-) myeloid-derived suppressor cells impair antimicrobial responses in patients with acute-on-chronic liver failure [J]. Gut, 2018, 67(6): 1155-1167. [15] Yao J, Liu T, Zhao Q, et al. Genetic landscape and immune mechanism of monocytes associated with the progression of acute-on-chronic liver failure [J]. Hepatol Int, 2023, 17(3): 676-88. [16] Maheshwari D, Kumar D, Jagdish R K, et al. Bioenergetic Failure Drives Functional Exhaustion of Monocytes in Acute-on-Chronic Liver Failure [J]. Front Immunol, 2022, 13:856587. [17] Peng B, Li H, Liu K, et al. Intrahepatic macrophage reprogramming associated with lipid metabolism in hepatitis B virus-related acute-on-chronic liver failure [J]. J Transl Med, 2023, 21(1): 419. [18] Trovato F M, Zia R, Napoli S, et al. Dysregulation of the Lysophosphatidylcholine/Autotaxin/Lysophosphatidic Acid Axis in Acute-on-Chronic Liver Failure Is Associated With Mortality and Systemic Inflammation by Lysophosphatidic Acid-Dependent Monocyte Activation [J]. Hepatology, 2021, 74(2): 907-925. [19] Du B, Teng J, Yin R, et al. Increased Circulating T Follicular Helper Cells Induced via IL-12/21 in Patients With Acute on Chronic Hepatitis B Liver Failure [J]. Front Immunol, 2021, 12:641362. [20] Yu X, Yang F, Shen Z, et al. BTLA contributes to acute-on-chronic liver failure infection and mortality through CD4(+) T-cell exhaustion [J]. Nat Commun, 2024, 15(1): 1835. [21] Zhang Y, Zhang X, Han J, et al. Downregulated VISTA enhances Th17 differentiation and aggravates inflammation in patients with acute-on-chronic liver failure [J]. Hepatol Int, 2023, 17(4): 1000-1015. [22] Zhou X, Li Y, Ji Y, et al. PD-1 Involvement in Peripheral Blood CD8(+) T Lymphocyte Dysfunction in Patients with Acute-on-chronic Liver Failure [J]. J Clin Transl Hepatol, 2021, 9(3): 283-290. [23] Zhao Y, He W, Wang C, et al. Characterization of intrahepatic B cells in acute-on-chronic liver failure [J]. Front Immunol, 2022, 13:1041176. [24] Li H J, Yang N, Mu X, et al. Reduction of natural killer cells is associated with poor outcomes in patients with hepatitis B virus-related acute-on-chronic liver failure [J]. Hepatol Int, 2022, 16(6): 1398-1411. [25] Yang B, Sun F, Chen Y, et al. Mononuclear myeloid-derived suppressor cells expansion is associated with progression of liver failure in patients with acute decompensation of cirrhosis [J]. Int Immunopharmacol, 2023, 122:110581. [26] Yu X, Sun J, Yang F, et al. Granulocytic myeloid-derived suppressor cells increase infection risk via the IDO/IL-10 pathway in patients with hepatitis B virus-related liver failure [J]. Front Immunol, 2022, 13:966514. [27] Zhang Z, Zou Z S, Fu J L, et al. Severe dendritic cell perturbation is actively involved in the pathogenesis of acute-on-chronic hepatitis B liver failure [J]. J Hepatol, 2008, 49(3): 396-406. [28] Zhang I W, Curto A, López-Vicario C, et al. Mitochondrial dysfunction governs immunometabolism in leukocytes of patients with acute-on-chronic liver failure [J]. J Hepatol, 2022, 76(1): 93-106. [29] Moreau R, Clària J, Aguilar F, et al. Blood metabolomics uncovers inflammation-associated mitochondrial dysfunction as a potential mechanism underlying ACLF [J]. J Hepatol, 2020, 72(4): 688-701. [30] Engelmann C, Clària J, Szabo G, et al. Pathophysiology of decompensated cirrhosis: Portal hypertension, circulatory dysfunction, inflammation, metabolism and mitochondrial dysfunction [J]. J Hepatol, 2021, 75 Suppl 1(Suppl 1): S49-s66. [31] Weiss E, Dela Peña-Ramirez C, Aguilar F, et al. Sympathetic nervous activation, mitochondrial dysfunction and outcome in acutely decompensated cirrhosis: the metabolomic prognostic models (CLIF-C MET) [J]. Gut, 2023, 72(8): 1581-1591. [32] Yang L, Zhen L, Li Z, et al. Human liver tissue transcriptomics revealed immunometabolic disturbances and related biomarkers in hepatitis B virus-related acute-on-chronic liver failure [J]. Front Microbiol, 2022, 13:1080484. [33] Li J, Liang X, Jiang J, et al. PBMC transcriptomics identifies immune-metabolism disorder during the development of HBV-ACLF [J]. Gut, 2022, 71(1): 163:175. [34] Hassan H M, Cai Q, Liang X, et al. Transcriptomics reveals immune-metabolism disorder in acute-on-chronic liver failure in rats [J]. Life Sci Alliance, 2022, 5(3): e202101189. [35] Liang X, Li P, Jiang J, et al. Transcriptomics unveils immune metabolic disruption and a novel biomarker of mortality in patients with HBV-related acute-on-chronic liver failure [J]. JHEP Rep, 2023, 5(9): 100848. [36] Trebicka J, Bork P, Krag A, et al. Utilizing the gut microbiome in decompensated cirrhosis and acute-on-chronic liver failure [J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 167-180. [37] Tranah T H, Edwards L A, Schnabl B, et al. Targeting the gut-liver-immune axis to treat cirrhosis [J]. Gut, 2021, 70(5): 982-994. [38] Solé C, Guilly S, Da Silva K, et al. Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship With Acute-on-Chronic Liver Failure and Prognosis [J]. Gastroenterology, 2021, 160(1): 206-18.e13. [39] Yao X, Yu H, Fan G, et al. Impact of the Gut Microbiome on the Progression of Hepatitis B Virus Related Acute-on-Chronic Liver Failure [J]. Front Cell Infect Microbiol, 2021, 11:573923. [40] Wang K, Zhang Z, Mo Z S, et al. Gut microbiota as prognosis markers for patients with HBV-related acute-on-chronic liver failure [J]. Gut Microbes, 2021, 13(1): 1-15. [41] Odenwald M A, Lin H, Lehmann C, et al. Bifidobacteria metabolize lactulose to optimize gut metabolites and prevent systemic infection in patients with liver disease [J]. Nat Microbiol, 2023, 8(11): 2033-2049. |