[1] Rhyu J, Yu R. Newly discovered endocrine functions of the liver[J]. World J Hepatol, 2021, 13(11): 1611-1628. [2] 吴文娟, 王成达. 磁共振弥散加权成像及增强扫描对肝脏占位性病变的诊断价值[J]. 肝脏,2013,18(1):15-17. [3] 张敏, 刘华丽, 胡丽佳. 低剂量超声造影联合血清微小RNA-106b鉴别肝脏良、恶性占位性病变的价值[J]. 中国肝脏病杂志(电子版),2021,13(2):63-68. [4] 刘兴远, 白彬. miRNA对肝星状细胞的作用在肝纤维化病程中的影响[J]. 肝脏,2021,26(10):1178-1181. [5] 谢志伟, 陆霭琪, 杨可立, 等. 乙型肝炎病毒相关慢加急性肝衰竭患者血清miRNA差异表达谱及其预后预测价值[J]. 肝脏,2022,27(8):853-857. [6] Wang Q, Wang G, Niu L, et al. Exosomal MiR-1290 promotes angiogenesis of hepatocellular carcinoma via targeting SMEK1[J]. J Oncol, 2021, 2021: 6617700-6617700. [7] Pruseth B, Ghosh A, Pradhan D, et al. Analysis of overexpressed miRNA in circulation and cancer tissue to develop a potential microRNA panel for the diagnosis of colorectal cancer[J]. MicroRNA, 2021, 10(4): 250-262. [8] 任彦瑜, 袁国盛, 周宇辰, 等. 慢性乙型肝炎患者肝脏良性占位的发病率及其特点:基于39450例彩色多普勒超声的病例对照研究[J]. 南方医科大学学报,2019,39(10):1149-1154. [9] Alizadeh A, Joukar F, Ghorani N, et al. Prevalence of hepatic space-occupying lesions based on sonographic findings in patients referred to guilan cohort center, Iran[J]. Hepat Mon, 2022, 22(1):e127545. [10] Starmans M P A, Miclea R L, Vilgrain V, et al. Automated differentiation of malignant and benign primary solid liver lesions on MRI: an externally validated radiomics model[J]. medRxiv, 2021: 2021.08. 10.21261827. [11] Hasan M E, Khouri H. Ultrasound imaging: differentiating benign and malignant hepatic tumors[J]. SAS J Med, 2023, 11: 1191-1195. [12] Hsiao C Y, Chen P D, Huang K W. A prospective assessment of the diagnostic value of contrast-enhanced ultrasound, dynamic computed tomography and magnetic resonance imaging for patients with small liver tumors[J]. J Clin Med, 2019, 8(9): 1353. [13] Wilson S R, Burns P N, Kono Y. Contrast-enhanced ultrasound of focal liver masses: a success story[J]. UMB, 2020, 46(5): 1059-1070. [14] Onishi M, Ochiya T, Tanaka Y. MicroRNA and liver cancer[J]. Cancer Drug Resist, 2020, 3(3): 385-400. [15] Xu J, An P, Winkler C A, et al. Dysregulated microRNAs in hepatitis B virus-related hepatocellular carcinoma: potential as biomarkers and therapeutic targets[J]. Front Oncol, 2020, 10: 1271. [16] Zhou Y, Liu F, Ma C, et al. Involvement of microRNAs and their potential diagnostic, therapeutic, and prognostic role in hepatocellular carcinoma[J]. J Clin Lab Anal, 2022, 36(10): e24673. [17] Kalhori M R, Soleimani M, Arefian E, et al. The potential role of miR-1290 in cancer progression, diagnosis, prognosis, and treatment: an oncomiR or onco-suppressor microRNA?[J]. J cell biochem, 2022, 123(3): 506-531. [18] Guz M, Jeleniewicz W, Cybulski M. An insight into miR-1290: an oncogenic miRNA with diagnostic potential[J]. Int J Mol Sci, 2022, 23(3): 1234. [19] Bai J C, Huang G Y. miR-1825 accelerates cell proliferation and inhibits cell apoptosis of prostate cancer via targeting suppressor of cancer cell invasion[J]. J Biomater Tiss Eng, 2021, 11(5): 820-831. [20] Capik O, Gundogdu B, Tatar A, et al. Oncogenic miR-1825 promotes head and neck carcinogenesis via targeting FREM1[J]. J Cell Biochem, 2023, 124(10): 1628-1645. [21] Hassan M, Nasr S M, Amin N A, et al. Circulating liver cancer stem cells and their stemness-associated MicroRNAs as diagnostic and prognostic biomarkers for viral hepatitis-induced liver cirrhosis and hepatocellular carcinoma[J]. NCRNA, 2023, 8(2): 155-163. |