[1] Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world. J hepatol, 2019, 70: 151-171. [2] Arab J P, Karpen SJ, Dawson PA, et al. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology, 2017, 65: 350-362. [3] Arab JP, Martin-Mateos RM, Shah VH. Gut-liver axis, cirrhosis and portal hypertension: the chicken and the egg. Hepatol Int, 2018, 12: 24-33. [4] Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol, 2018, 15: 111-128. [5] Gottlieb A, Canbay A. Why bile acids are so important in non-alcoholic fatty liver disease (NAFLD) progression. Cells, 2019, 8: 1358. [6] Marin JJ, Macias RI, Briz O, et al. Bile acids in physiology, pathology and pharmacology. Curr Drug Metab, 2015, 17: 4-29. [7] Martinot E, Sedes L, Baptissart M, et al. Bile acids and their receptors. Mol Aspects Med, 2017, 56: 2-9. [8] Sydor S, Best J, Messerschmidt I, et al. Altered microbiota diversity and bile acid signaling in cirrhotic and noncirrhotic NASH-HCC. Clin Transl Gastroen, 2020, 11: e00131. [9] Chen W, Wei Y, Xiong A, et al. Comprehensive analysis of serum and fecal bile acid profiles and interaction with gut microbiota in primary biliary cholangitis. Clin Rev Allerg Immu, 2020, 58: 25-38. [10] Wang X, Xie G, Zhao A, et al. Serum bile acids are associated with pathological progression of hepatitis B-induced cirrhosis. J Proteome Res, 2016, 15: 1126-1134. [11] Kakiyama G, Pandak WM, Gillevet PM, et al. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J hepatol, 2013, 58: 949-955. [12] Horvatits T, Drolz A, Roedl K, et al. Serum bile acids as marker for acute decompensation and acute-on-chronic liver failure in patients with non-cholestatic cirrhosis. Liver Int, 2017, 37: 224-231. [13] Weiss N, Barbier Saint Hilaire P, Colsch B, et al. Cerebrospinal fluid metabolomics highlights dysregulation of energy metabolism in overt hepatic encephalopathy. J hepatol, 2016, 65: 1120-1130. [14] Mcmillin M, Frampton G, Quinn M, et al. Bile acid signaling is involved in the neurological decline in a murine model of acute liver failure. Am J Pathol, 2016, 186: 312-323. [15] Choudhuri S, Cherrington NJ, Li N, et al. Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metab Dispos, 2003, 31: 1337-1345. [16] Quinn M, Mcmillin M, Galindo C, et al. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig Liver Dis, 2014, 46: 527-534. [17] Mcmillin M, Frampton G, Grant S, et al. Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice. Front Cell Neurosci, 2017, 11: 191. [18] Islam K B, Fukiya S, Hagio M, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology, 2011, 141: 1773-1781. [19] Stepien M, Keski-Rahkonen P, Kiss A, et al. Metabolic perturbations prior to hepatocellular carcinoma diagnosis: Findings from a prospective observational cohort study. Int J Cancer, 2021, 148: 609-625. [20] Petrick JL, Florio AA, Koshiol J, et al. Prediagnostic concentrations of circulating bile acids and hepatocellular carcinoma risk: REVEAL-HBV and HCV studies. Int J Cancer, 2020, 147: 2743-2753. [21] Anakk S, Bhosale M, Schmidt VA, et al. Bile acids activate YAP to promote liver carcinogenesis. Cell Rep, 2013, 5: 1060-1069. [22] Xie G, Wang X, Huang F, et al. Dysregulated hepatic bile acids collaboratively promote liver carcinogenesis. Int J Cancer, 2016, 139: 1764-1775. [23] Gao L, Lv G, Li R, et al. Glycochenodeoxycholate promotes hepatocellular carcinoma invasion and migration by AMPK/mTOR dependent autophagy activation. Cancer Lett, 2019, 454: 215-223. [24] Fukase K, Ohtsuka H, Onogawa T, et al. Bile acids repress E-cadherin through the induction of Snail and increase cancer invasiveness in human hepatobiliary carcinoma. Cancer Sci, 2008, 99: 1785-1792. [25] Liu R, Zhao R, Zhou X, et al. Conjugated bile acids promote cholangiocarcinoma cell invasive growth through activation of sphingosine 1-phosphate receptor 2. Hepatology, 2014, 60: 908-918. [26] Verbeke L, Farre R, Trebicka J, et al. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology, 2014, 59: 2286-2298. [27] Schwabl P, Hambruch E, Seeland BA, et al. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J hepatol, 2017, 66: 724-733. [28] Sorribas M, Jakob MO, Yilmaz B, et al. FXR modulates the gut-vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. J hepatol, 2019, 71: 1126-1140. [29] Nevens F, Andreone P, Mazzella G, et al. A placebo-controlled trial of obeticholic acid in primary biliary cholangitis. N Engl J Med, 2016, 375: 631-643. [30] Younossi ZM, Ratziu V, Loomba R, et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet, 2019, 394: 2184-2196. [31] Patel K, Harrison SA, Elkhashab M, et al. Cilofexor, a nonsteroidal FXR agonist, in patients with noncirrhotic NASH: a phase 2 randomized controlled trial. Hepatology, 2020, 72: 58-71. [32] Liu Y, Chen K, Li F, et al. Probiotic lactobacillus rhamnosus GG prevents liver fibrosis through inhibiting hepatic bile acid synthesis and enhancing bile acid excretion in mice. Hepatology, 2020, 71: 2050-2066. [33] Ma C, Han M, Heinrich B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science, 2018, 360: eaan5931. [34] Fernandez J, Navasa M, Planas R, et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology, 2007, 133: 818-824. [35] Bajaj JS, Fagan A, Gavis EA, et al. Long-term outcomes of fecal microbiota transplantation in patients with cirrhosis. Gastroenterology, 2019, 156: 1921-1923 e1923. [36] Slijepcevic D, Van De Graaf SF. Bile acid uptake transporters as targets for therapy. Dig Dis, 2017, 35: 251-258. [37] Miethke AG, Zhang W, Simmons J, et al. Pharmacological inhibition of apical sodium-dependent bile acid transporter changes bile composition and blocks progression of sclerosing cholangitis in multidrug resistance 2 knockout mice. Hepatology, 2016, 63: 512-523. [38] Hegade VS, Kendrick SF, Dobbins RL, et al. BAT117213: Ileal bile acid transporter (IBAT) inhibition as a treatment for pruritus in primary biliary cirrhosis: study protocol for a randomised controlled trial. BMC Gastroenterol, 2016, 16: 71. |