[1] Yoon KT, Liu H, Lee SS. Cirrhotic cardiomyopathy. Curr Gastroenterol Rep, 2020, 22(9): 45. [2] Zardi EM, Abbate A, Zardi DM, et al. Cirrhotic cardiomyopathy. J Am Coll Cardiol, 2010, 56(7): 539-549. [3] Siniscalchi A, Aurini L, Spedicato S, et al. Hyperdynamic circulation in cirrhosis: predictive factors and outcome following liver transplantation. Minerva Anestesiol, 2013, 79(1): 15-23. [4] Gunarathne L S, Rajapaksha H, Shackel N, et al. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics. World J Gastroenterol, 2020, 26(40): 6111-6140. [5] Moller S, Lee S S. Cirrhotic cardiomyopathy. J Hepatol, 2018, 69(4): 958-960. [6] Fukui H. Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia. World J Hepatol, 2015, 7(3): 425-442. [7] Gregolin CS, do Nascimento M, Borges de Souza S L, et al. Myocardial dysfunction in cirrhotic cardiomyopathy is associated with alterations of phospholamban phosphorylation and il-6 levels. Arch Med Res, 2021, 52(3): 284-293. [8] Gazawi H, Ljubuncic P, Cogan U, et al. The effects of bile acids on beta-adrenoceptors, fluidity, and the extent of lipid peroxidation in rat cardiac membranes. Biochem Pharmacol, 2000, 59(12): 1623-1628. [9] Voiosu A, Wiese S, Voiosu T, et al. Bile acids and cardiovascular function in cirrhosis. Liver Int, 2017, 37(10): 1420-1430. [10] Møller S, Hove JD, Dixen U, et al. New insights into cirrhotic cardiomyopathy. Int J Cardiol, 2013, 167(4): 1101-1108. [11] Yu S, Sun L, Wang H, et al. Autonomic regulation of imbalance-induced myocardial fibrosis and its mechanism in rats with cirrhosis. Exp Ther Med, 2021, 22(3): 1040. [12] Ma L, Liu X, Wu Q, et al. Role of Anti-Beta-1-Adrenergic receptor antibodies in cardiac dysfunction in patients with cirrhotic cardiomyopathy. J Cardiovasc Transl Res, 2021. [13] Ligresti A, De Petrocellis L, Di Marzo V. From phytocannabinoids to cannabinoid receptors and endocannabinoids: pleiotropic physiological and pathological roles through complex pharmacology. Physiol Rev, 2016, 96(4): 1593-1659. [14] Tam J, Liu J, Mukhopadhyay B, et al. Endocannabinoids in liver disease. Hepatology, 2011, 53(1): 346-355. [15] Pacher P, Steffens S, Hasko G, et al. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol, 2018, 15(3): 151-166. [16] Jouanjus E, Lapeyre-Mestre M, Micallef J, et al. Cannabis use: signal of increasing risk of serious cardiovascular disorders. J Am Heart Assoc, 2014, 3(2): e000638. [17] Cakir M, Tekin S, Okan A, et al. The ameliorating effect of cannabinoid type 2 receptor activation on brain, lung, liver and heart damage in cecal ligation and puncture-induced sepsis model in rats. Int Immunopharmacol, 2020, 78: 105978. [18] Louvet A, Teixeira-Clerc F, Chobert M N, et al. Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice. Hepatology, 2011, 54(4): 1217-1226. [19] Matyas C, Erdelyi K, Trojnar E, et al. Interplay of Liver-Heart inflammatory axis and cannabinoid 2 receptor signaling in an experimental model of hepatic cardiomyopathy. Hepatology, 2020, 71(4): 1391-1407. [20] Glenn TK, Honar H, Liu H, et al. Role of cardiac myofilament proteins titin and collagen in the pathogenesis of diastolic dysfunction in cirrhotic rats. J Hepatol, 2011, 55(6): 1249-1255. [21] Lee SS. Cardiac dysfunction in spontaneous bacterial peritonitis: a manifestation of cirrhotic cardiomyopathy?. Hepatology (Baltimore, Md), 2003, 38(5): 1089-1091. [22] Wiese S, Hove J, Mo S, et al. Myocardial extracellular volume quantified by magnetic resonance is increased in cirrhosis and related to poor outcome. Liver Int, 2018, 38(9): 1614-1623. [23] Wiese S, Voiosu A, Hove J D, et al. Fibrogenesis and inflammation contribute to the pathogenesis of cirrhotic cardiomyopathy. Aliment Pharmacol Ther, 2020, 52(2): 340-350. [24] Honar H, Liu H, Zhang M L, et al. Impaired myosin isoform shift and calcium transients contribute to cellular pathogenesis of rat cirrhotic cardiomyopathy. Liver Int, 2020, 40(11): 2808-2819. [25] Joseph LC, Reyes MV, Lakkadi KR, et al. PKCδ causes sepsis-induced cardiomyopathy by inducing mitochondrial dysfunction. Am J Physiol Heart Circ Physiol, 2020, 318(4): H778-H786. [26] Wu H, Liu J, Li W, et al. LncRNA-HOTAIR promotes TNF-alpha production in cardiomyocytes of LPS-induced sepsis mice by activating NF-kappaB pathway. Biochem Biophys Res Commun, 2016, 471(1): 240-246. [27] Izzy M, VanWagner LB, Lin G, et al. Redefining Cirrhotic Cardiomyopathy for the Modern Era. Hepatology (Baltimore, Md), 2020, 71(1): 334-345. [28] Lauridsen TK, Alhede C, Crowley AL, et al. Two-dimensional global longitudinal strain is superior to left ventricular ejection fraction in prediction of outcome in patients with left-sided infective endocarditis. Int J Cardiol, 2018, 260: 118-123. [29] Izzy MJ, VanWagner LB. Current concepts of cirrhotic cardiomyopathy. Clin Liver Dis, 2021, 25(2): 471-481. [30] Izzy M, Soldatova A, Sun X, et al. Cirrhotic cardiomyopathy predicts posttransplant cardiovascular disease: revelations of the new diagnostic criteria. Liver Transpl, 2021, 27(6): 876-886. [31] Mechelinck M, Hartmann B, Hamada S, et al. Global longitudinal strain at rest as an independent predictor of mortality in liver transplant candidates: a retrospective clinical study. J Clin Med, 2020, 9(8). [32] Billey C, Billet S, Robic MA, et al. A prospective study identifying predictive factors of cardiac decompensation after transjugular intrahepatic portosystemic shunt: the toulouse algorithm. Hepatology, 2019, 70(6): 1928-1941. [33] 汪菁峰,马婧嶔,罗剑钧.肝硬化患者经颈静脉肝内门体分流术对血流动力学的影响.中华内科杂志,2020,59(09):700-705. [34] Alvarado-Tapias E, Ardevol A, Garcia-Guix M, et al. Short-term hemodynamic effects of beta-blockers influence survival of patients with decompensated cirrhosis. J Hepatol, 2020, 73(4): 829-841. |