肝脏 ›› 2023, Vol. 28 ›› Issue (11): 1264-1268.
王晓凡, 丛敏, 贾继东
收稿日期:
2023-09-30
出版日期:
2023-11-30
发布日期:
2024-03-03
通讯作者:
贾继东,Email: jia_jd@ccmu.edu.cn
基金资助:
Received:
2023-09-30
Online:
2023-11-30
Published:
2024-03-03
摘要: 慢性肝病的进程常涉及慢性实质损伤、炎症反应的持续激活以及纤维生成和伤口愈合反应的持续激活。其中,巨噬细胞是肝脏的关键细胞,对于响应肝损伤引起的炎症反应和维持组织稳态至关重要。目前普遍认为巨噬细胞在肝纤维化进展和逆转过程中具有异质性,其可以根据组织微环境的不同而发生表型转换。巨噬细胞不仅在肝纤维化进展中起到促进作用,其还可以在逆转阶段通过分泌基质金属蛋白酶,促进胶原纤维水解,促进肝纤维化逆转。本文就巨噬细胞表型转换在肝纤维化进展及逆转中的作用作一综述。
王晓凡, 丛敏, 贾继东. 巨噬细胞表型转换在肝纤维化进展及逆转中的作用[J]. 肝脏, 2023, 28(11): 1264-1268.
[1] Diseases GBD, Injuries C. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet,2020,396:1204-1222. [2] Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world[J]. J Hepatol,2019,70:151-171. [3] Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol,2021,18:151-166. [4] Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis[J]. Adv Drug Deliv Rev,2017,121:27-42. [5] Cheng D, Chai J, Wang H, et al. Hepatic macrophages: Key players in the development and progression of liver fibrosis[J]. Liver Int,2021,41:2279-2294. [6] Guillot A, Tacke F. Liver Macrophages: Old Dogmas and New Insights[J]. Hepatol Commun,2019,3:730-743. [7] Guilliams M, Scott CL. Liver macrophages in health and disease[J]. Immunity,2022,55:1515-1529. [8] Krenkel O, Tacke F. Liver macrophages in tissue homeostasis and disease[J]. Nat Rev Immunol,2017,17:306-321. [9] Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease[J]. Nature,2013,496:445-455. [10] Gomez Perdiguero E, Klapproth K, Schulz C, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors[J]. Nature,2015,518:547-551. [11] Roohani S, Tacke F. Liver Injury and the Macrophage Issue: Molecular and Mechanistic Facts and Their Clinical Relevance[J]. Int J Mol Sci,2021,22. [12] Scott CL, Zheng F, De Baetselier P, et al. Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells[J]. Nat Commun,2016,7:10321. [13] Kinoshita M, Uchida T, Sato A, et al. Characterization of two F4/80-positive Kupffer cell subsets by their function and phenotype in mice[J]. J Hepatol,2010,53:903-910. [14] Heymann F, Peusquens J, Ludwig-Portugall I, et al. Liver inflammation abrogates immunological tolerance induced by Kupffer cells[J]. Hepatology,2015,62:279-291. [15] Shi C, Pamer EG. Monocyte recruitment during infection and inflammation[J]. Nat Rev Immunol,2011,11:762-774. [16] Tacke F, Zimmermann HW. Macrophage heterogeneity in liver injury and fibrosis[J]. J Hepatol,2014,60:1090-1096. [17] Liaskou E, Zimmermann HW, Li KK, et al. Monocyte subsets in human liver disease show distinct phenotypic and functional characteristics[J]. Hepatology,2013,57:385-398. [18] Ozanska A, Szymczak D, Rybka J. Pattern of human monocyte subpopulations in health and disease[J]. Scand J Immunol,2020,92:e12883. [19] Atri C, Guerfali FZ, Laouini D. Role of Human Macrophage Polarization in Inflammation during Infectious Diseases[J]. Int J Mol Sci,2018,19. [20] Munoz J, Akhavan NS, Mullins AP, et al. Macrophage Polarization and Osteoporosis: A Review[J]. Nutrients,2020,12. [21] Yao Y, Xu XH, Jin L. Macrophage Polarization in Physiological and Pathological Pregnancy[J]. Front Immunol,2019,10:792. [22] Sica A, Erreni M, Allavena P, et al. Macrophage polarization in pathology[J]. Cell Mol Life Sci,2015,72:4111-4126. [23] Lu H, Wu L, Liu L, et al. Quercetin ameliorates kidney injury and fibrosis by modulating M1/M2 macrophage polarization[J]. Biochem Pharmacol,2018,154:203-212. [24] Wu X, Wang Z, Shi J, et al. Macrophage polarization toward M1 phenotype through NF-kappaB signaling in patients with Behcet’s disease[J]. Arthritis Res Ther,2022,24:249. [25] Chen W, Liu Y, Chen J, et al. The Notch signaling pathway regulates macrophage polarization in liver diseases[J]. Int Immunopharmacol,2021,99:107938. [26] Hu N, Zhang X, Zhang X, et al. Inhibition of Notch activity suppresses hyperglycemia-augmented polarization of macrophages to the M1 phenotype and alleviates acute pancreatitis[J]. Clinical Science,2022,136:455-471. [27] Ma T, Li X, Zhu Y, et al. Excessive Activation of Notch Signaling in Macrophages Promote Kidney Inflammation, Fibrosis, and Necroptosis[J]. Front Immunol,2022,13:835879. [28] Deng S, Jin P, Liu S, et al. Recruitment of regulatory T cells with rCCL17 promotes M2 microglia/macrophage polarization through TGFβ/TGFβR/Smad2/3 pathway in a mouse model of intracerebral hemorrhage[J]. Experimental Neurology,2023,367. [29] Liu F, Qiu H, Xue M, et al. MSC-secreted TGF-beta regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway[J]. Stem Cell Res Ther,2019,10:345. [30] Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance[J]. Nature,2007,447:1116-1120. [31] Qiao N, Lin Y, Wang Z, et al. Maresin1 Promotes M2 Macrophage Polarization Through Peroxisome Proliferator-Activated Receptor-gamma Activation to Expedite Resolution of Acute Lung Injury[J]. J Surg Res,2020,256:584-594. [32] Vergadi E, Ieronymaki E, Lyroni K, et al. Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization[J]. J Immunol,2017,198:1006-1014. [33] Yu T, Gao M, Yang P, et al. Insulin promotes macrophage phenotype transition through PI3K/Akt and PPAR-gamma signaling during diabetic wound healing[J]. J Cell Physiol,2019,234:4217-4231. [34] Le F, Yang L, Han Y, et al. TPL Inhibits the Invasion and Migration of Drug-Resistant Ovarian Cancer by Targeting the PI3K/AKT/NF-kappaB-Signaling Pathway to Inhibit the Polarization of M2 TAMs[J]. Front Oncol,2021,11:704001. [35] Huangfu N, Zheng W, Xu Z, et al. RBM4 regulates M1 macrophages polarization through targeting STAT1-mediated glycolysis[J]. Int Immunopharmacol,2020,83:106432. [36] He Y, Gao Y, Zhang Q, et al. IL-4 Switches Microglia/macrophage M1/M2 Polarization and Alleviates Neurological Damage by Modulating the JAK1/STAT6 Pathway Following ICH[J]. Neuroscience,2020,437:161-171. [37] Lu TX, Rothenberg ME. MicroRNA[J]. J Allergy Clin Immunol,2018,141:1202-1207. [38] Guo Q, Zhu X, Wei R, et al. miR-130b-3p regulates M1 macrophage polarization via targeting IRF1[J]. J Cell Physiol,2021,236:2008-2022. [39] Zhang Y, Le X, Zheng S, et al. MicroRNA-146a-5p-modified human umbilical cord mesenchymal stem cells enhance protection against diabetic nephropathy in rats through facilitating M2 macrophage polarization[J]. Stem Cell Res Ther,2022,13:171. [40] Tan Z, Sun H, Xue T, et al. Liver Fibrosis: Therapeutic Targets and Advances in Drug Therapy[J]. Front Cell Dev Biol,2021,9:730176. [41] Wen Y, Lambrecht J, Ju C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol,2021,18:45-56. [42] Matsuda M, Seki E. Hepatic Stellate Cell-Macrophage Crosstalk in Liver Fibrosis and Carcinogenesis[J]. Semin Liver Dis,2020,40:307-320. [43] Pradere JP, Kluwe J, De Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice[J]. Hepatology,2013,58:1461-1473. [44] Imamura M, Ogawa T, Sasaguri Y, et al. Suppression of macrophage infiltration inhibits activation of hepatic stellate cells and liver fibrogenesis in rats[J]. Gastroenterology,2005,128:138-146. [45] Rao J, Wang H, Ni M, et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2[J]. Gut,2022,71:2539-2550. [46] Xu L, Chen Y, Nagashimada M, et al. CC chemokine ligand 3 deficiency ameliorates diet-induced steatohepatitis by regulating liver macrophage recruitment and M1/M2 status in mice[J]. Metabolism,2021,125:154914. [47] Fang W, Deng Z, Benadjaoud F, et al. Cathepsin B deficiency ameliorates liver lipid deposition, inflammatory cell infiltration, and fibrosis after diet-induced nonalcoholic steatohepatitis[J]. Transl Res,2020,222:28-40. [48] Cao Y, Mai W, Li R, et al. Macrophages evoke autophagy of hepatic stellate cells to promote liver fibrosis in NAFLD mice via the PGE2/EP4 pathway[J]. Cell Mol Life Sci,2022,79:303. [49] Xue J, Xiao T, Wei S, et al. miR-21-regulated M2 polarization of macrophage is involved in arsenicosis-induced hepatic fibrosis through the activation of hepatic stellate cells[J]. J Cell Physiol,2021,236:6025-6041. [50] Bility MT, Nio K, Li F, et al. Chronic hepatitis C infection-induced liver fibrogenesis is associated with M2 macrophage activation[J]. Sci Rep,2016,6:39520. [51] Karlmark KR, Weiskirchen R, Zimmermann HW, et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis[J]. Hepatology,2009,50:261-274. [52] Baeck C, Wei X, Bartneck M, et al. Pharmacological inhibition of the chemokine C-C motif chemokine ligand 2 (monocyte chemoattractant protein 1) accelerates liver fibrosis regression by suppressing Ly-6C(+) macrophage infiltration in mice[J]. Hepatology,2014,59:1060-1072. [53] Chang ML, Lin YT, Kung HN, et al. A triterpenoid-enriched extract of bitter melon leaves alleviates hepatic fibrosis by inhibiting inflammatory responses in carbon tetrachloride-treated mice[J]. Food Funct,2021,12:7805-7815. [54] Campana L, Iredale JP. Regression of Liver Fibrosis[J]. Semin Liver Dis,2017,37:1-10. [55] Ramachandran P, Pellicoro A, Vernon MA, et al. Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis[J]. Proc Natl Acad Sci U S A,2012,109:E3186-3195. [56] Ma PF, Gao CC, Yi J, et al. Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice[J]. J Hepatol,2017,67:770-779. [57] Li YH, Shen S, Shao T, et al. Mesenchymal stem cells attenuate liver fibrosis by targeting Ly6C(hi/lo) macrophages through activating the cytokine-paracrine and apoptotic pathways[J]. Cell Death Discov,2021,7:239. [58] Zheng Z, Wang H, Li L, et al. Splenectomy enhances the Ly6C(low) phenotype in hepatic macrophages by activating the ERK1/2 pathway during liver fibrosis[J]. Int Immunopharmacol,2020,86:106762. [59] Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis[J]. Cell Mol Immunol,2021,18:579-587. [60] van der Heide D, Weiskirchen R, Bansal R. Therapeutic Targeting of Hepatic Macrophages for the Treatment of Liver Diseases[J]. Front Immunol,2019,10:2852. [61] Liu C, Schönke M, Spoorenberg B, et al. FGF21 protects against hepatic lipotoxicity and macrophage activation to attenuate fibrogenesis in nonalcoholic steatohepatitis[J]. eLife,2023,12. [62] Friedman SL, Ratziu V, Harrison SA, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis[J]. Hepatology,2018,67:1754-1767. [63] Moroni F, Dwyer BJ, Graham C, et al. Safety profile of autologous macrophage therapy for liver cirrhosis[J]. Nat Med,2019,25:1560-1565. |
[1] | 吴雯玥, 孙亚朦, 尤红. 肝纤维化逆转:小进步尚待大突破[J]. 肝脏, 2024, 29(1): 13-15. |
[2] | 刘普, 卓红平, 陶光举. Gd-EOB-DTPA增强磁共振成像对乙型肝炎肝纤维化程度的评估[J]. 肝脏, 2024, 29(1): 47-49. |
[3] | 陈万峰, 许亚春. 慢性乙型肝炎肝纤维化患者剪切波弹性成像参数变化与TGFβ1、TIMP-1的相关性[J]. 肝脏, 2024, 29(1): 50-55. |
[4] | 王大龙, 王涛, 王康娥. 瞬时弹性成像及血清HBsAg、HBV DNA联合评估乙型肝炎肝纤维化程度的价值[J]. 肝脏, 2024, 29(1): 56-59. |
[5] | 赵东志, 李国东, 常媛媛, 曹哲丽, 赵雅娟. 非酒精性脂肪性肝病患者C/RL-r、APRI、FIB-4水平与肝纤维化发生的相关性[J]. 肝脏, 2024, 29(1): 68-72. |
[6] | 吴彬彬, 徐小琴, 顾星星, 解其华. 脂肪肝诊断中ElastPQ弹性成像技术检测肝硬度与肝纤维化评分及FIB-4指数的相关性分析[J]. 肝脏, 2024, 29(1): 73-76. |
[7] | 董旭, 许明晓, 李成忠. 白细胞介素-4在肝脏疾病中的研究进展[J]. 肝脏, 2024, 29(1): 130-133. |
[8] | 张会, 李晓琴, 王成伟, 王蔚, 肖丽, 咸建春. 关于将慢性乙型肝炎纤维化分期中“advanced fibrosis”译为“进展期肝纤维化”的商榷[J]. 肝脏, 2023, 28(9): 1011-1011. |
[9] | 王姝姝, 王树人. 自身免疫性肝炎所致肝衰竭的临床表现和组织病理学特征[J]. 肝脏, 2023, 28(9): 1037-1040. |
[10] | 闫虹佑, 许晓娟, 卫彦芳, 刘杏, 霍俊燕, 李轲, 许翠萍. IL-22对酒精性肝纤维化小鼠回肠紧密连接蛋白及Nrf2/HO-1抗氧化通路的影响[J]. 肝脏, 2023, 28(9): 1057-1063. |
[11] | 殷琳琳, 吕慧, 王戊辰, 刘学进. 超声弹性成像检测肝脏、脾脏硬度值与血清肝纤维化指标对慢性乙型肝炎患者肝纤维化的评价[J]. 肝脏, 2023, 28(9): 1064-1067. |
[12] | 齐婧姝, 平大冰, 孙鑫, 胡旭东, 彭渊, 刘成海. 中性粒细胞在肝纤维化中的作用[J]. 肝脏, 2023, 28(9): 1127-1130. |
[13] | 孙成林, 孙亚朦, 陈姝延, 尤红. 非酒精性脂肪性肝病无创评估的应用与前景[J]. 肝脏, 2023, 28(8): 889-891. |
[14] | 陈勇良, 赵辉, 王晓静, 李秋雨, 潘丽, 李振燕. 肝静脉彩色多普勒血流频谱在肝纤维化分期中的临床价值[J]. 肝脏, 2023, 28(8): 907-911. |
[15] | 宋洁, 聂虹, 迟卉, 郭瑞芳. 1b型慢性丙型肝炎患者血清巨噬细胞抑制因子-1水平升高临床价值分析[J]. 肝脏, 2023, 28(8): 950-952. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||