[1] Zhou J, Zheng Q, Chen Z. The Nrf2 pathway in liver diseases. Front Cell Dev Biol, 2022,10:826204. [2] Luangmonkong T, Suriguga S, Mutsaers H, et al. Targeting oxidative stress for the treatment of liver fibrosis. Rev Physiol Biochem Pharmacol, 2018,175:71-102. [3] Parola M, Pinzani M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med, 2019,65:37-55. [4] Roehlen N, Crouchet E, Baumert T F. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells, 2020,9(4). [5] Tu W, Wang H, Li S, et al. The anti-inflammatory and anti-oxidant mechanisms of the keap1/nrf2/are signaling pathway in chronic diseases. Aging Dis, 2019,10(3):637-651. [6] Gines P, Krag A, Abraldes J G, et al. Liver cirrhosis. Lancet, 2021,398(10308):1359-1376. [7] Asrani S K, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world. J Hepatol, 2019,70(1):151-171. [8] 吕艳杭, 吴姗姗, 王振常, 等. 中医药通过Nrf2/ARE发挥抗肝纤维化作用的研究进展. 中华中医药学刊, 2021,39(01):142-145. [9] Sies H, Berndt C, Jones D P. Oxidative stress. Annu Rev Biochem, 2017,86:715-748. [10] Bataller R, Brenner D A. Liver fibrosis. J Clin Invest, 2005,115(2):209-218. [11] Liang S, Kisseleva T, Brenner D A. The role of NADPH oxidases (NOXs) in liver fibrosis and the activation of myofibroblasts. Front Physiol, 2016,7:17. [12] Chen Z, Ma X, Zhu Y, et al. Paeoniflorin ameliorates ANIT-induced cholestasis by activating Nrf2 through an PI3K/Akt-dependent pathway in rats. Phytother Res, 2015,29(11):1768-1775. [13] Sandalio LM, Rodriguez-Serrano M, Romero-Puertas MC, et al. Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. Subcell Biochem, 2013,69:231-255. [14] Dawood RM, El-Meguid MA, Salum GM, et al. Key players of hepatic fibrosis. J Interferon Cytokine Res, 2020,40(10):472-489. [15] Dixon LJ, Barnes M, Tang H, et al. Kupffer cells in the liver. Compr Physiol, 2013,3(2):785-797. [16] Paik YH, Iwaisako K, Seki E, et al. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) homologues NOX1 and NOX2/gp91(phox) mediate hepatic fibrosis in mice. Hepatology, 2011,53(5):1730-1741. [17] Dong S, Chen QL, Song YN, et al. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J Toxicol Sci, 2016,41(4):561-572. [18] Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol, 2017,14(7):397-411. [19] Khadrawy SM, Mohamed HM, Mahmoud AM. Mesenchymal stem cells ameliorate oxidative stress, inflammation, and hepatic fibrosis via Nrf2/HO-1 signaling pathway in rats. Environ Sci Pollut Res Int, 2021,28(2):2019-2030. [20] Kitamura H, Motohashi H. NRF2 addiction in cancer cells. Cancer Sci, 2018,109(4):900-911. [21] Bellezza I, Giambanco I, Minelli A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res, 2018,1865(5):721-733. [22] 张晓倩, 杨慧, 张晓华. Nrf2/HO-1信号通路在慢性肝病中的研究. 中国肝脏病杂志(电子版), 2017,9(03):36-39. [23] Xiang M, Namani A, Wu S, et al. Nrf2: bane or blessing in cancer?. J Cancer Res Clin Oncol, 2014,140(8):1251-1259. [24] Cullinan SB, Gordan JD, Jin J, et al. The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol, 2004,24(19):8477-8486. [25] 张志群, 陈宏辉. 核转录因子Nrf2与肝脏疾病的研究进展. 中国现代医药杂志, 2014,16(09):99-102. [26] Hu C, Eggler AL, Mesecar AD, et al. Modification of keap1 cysteine residues by sulforaphane. Chem Res Toxicol, 2011,24(4):515-521. [27] Velichkova M, Hasson T. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Mol Cell Biol, 2005,25(11):4501-4513. [28] Saito R, Suzuki T, Hiramoto K, et al. Characterizations of three major cysteine sensors of keap1 in stress response. Mol Cell Biol, 2016,36(2):271-284. [29] Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci, 2014,39(4):199-218. [30] Liu B, Fang M, He Z, et al. Hepatitis B virus stimulates G6PD expression through HBx-mediated Nrf2 activation. Cell Death Dis, 2015,6(11):e1980. [31] Tang W, Jiang Y F, Ponnusamy M, et al. Role of Nrf2 in chronic liver disease. World J Gastroenterol, 2014,20(36):13079-13087. [32] Liao W, Yang W, Shen Z, et al. Heme oxygenase-1 regulates ferrous iron and foxo1 in control of hepatic gluconeogenesis. Diabetes, 2021,70(3):696-709. [33] Fathi R, Nasiri K, Akbari A, et al. Exercise protects against ethanol-induced damage in rat heart and liver through the inhibition of apoptosis and activation of Nrf2/Keap-1/HO-1 pathway. Life Sci, 2020,256:117958. [34] Babusikova E, Jesenak M, Durdik P, et al. Exhaled carbon monoxide as a new marker of respiratory diseases in children. J Physiol Pharmacol, 2008,59 Suppl 6:9-17. [35] Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci, 2016,73(17):3221-3247. [36] 王甜甜, 陈淳媛, 杨雷, 等. Nrf2/HO-1信号轴在氧化应激性疾病中的机制. 中南大学学报(医学版), 2019,44(01):74-80. [37] Wu TH, Wang PW, Lin TY, et al. Antioxidant properties of red raspberry extract alleviate hepatic fibrosis via inducing apoptosis and transdifferentiation of activated hepatic stellate cells. Biomed Pharmacother, 2021,144:112284. [38] Krajka-Kuzniak V, Paluszczak J, Celewicz L, et al. Phloretamide, an apple phenolic compound, activates the Nrf2/ARE pathway in human hepatocytes. Food Chem Toxicol, 2013,51:202-209. [39] Qiu M, Xiao F, Wang T, et al. Protective effect of Hedansanqi Tiaozhi Tang against non-alcoholic fatty liver disease in vitro and in vivo through activating Nrf2/HO-1 antioxidant signaling pathway. Phytomedicine, 2020,67:153140. [40] Zhao Z, Wang C, Zhang L, et al. Lactobacillus plantarum NA136 improves the non-alcoholic fatty liver disease by modulating the AMPK/Nrf2 pathway. Appl Microbiol Biotechnol, 2019,103(14):5843-5850. |