[1] Younossi ZM, Golabi P, DE Avila L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol, 2019, 71: 793-801. [2] Su RC, Lad A, Breidenbach JD, et al. Hyperglycemia induces key genetic and phenotypic changes in human liver epithelial HepG2 cells which parallel the Leprdb/J mouse model of non-alcoholic fatty liver disease (NAFLD). PLoS One, 2019, 14: e0225604. [3] 徐源, 黄存东, 李竹青, 等. 黄芪甲苷对糖尿病大鼠肝损伤保护作用及其机制研究. 安徽医科大学学报, 2017, 52: 1823-1829. [4] 寇小妮, 解新科, 郝明霞, 等. 大黄素介导IRS-2/PI3K/Akt通路干预大鼠非酒精性脂肪性肝炎的实验研究. 疑难病杂志, 2020, 19: 80-84. [5] Yang P, Liang Y, Luo Y, et al. Liraglutide ameliorates nonalcoholic fatty liver disease in diabetic mice via the IRS2/PI3K/Akt signaling pathway. Diabetes Metab Syndr Obes, 2019, 12: 1013-1021. [6] Wang Q, Wei S, Zhou S, et al. Hyperglycemia aggravates acute liver injury by promoting liver-resident macrophage NLRP3 inflammasome activation via the inhibition of AMPK/mTOR-mediated autophagy induction. Immunol Cell Biol, 2020, 98: 54-66. [7] Wang Q, Wei S, Zhou H, et al. Hyperglycemia exacerbates acetaminophen-induced acute liver injury by promoting liver-resident macrophage proinflammatory response via AMPK/PI3K/AKT-mediated oxidative stress. Cell Death Discov, 2019, 5: 119. [8] Yue S, Zhou HM, Zhu JJ, et al. Hyperglycemia and liver ischemia reperfusion injury: a role for the advanced glycation endproduct and its receptor pathway. Am J Transplant, 2015, 15: 2877-2887. [9] 吴霞. 糖尿病患者细菌性肝脓肿的临床特点及病原菌分布情况研究. 糖尿病新世界, 2019, 22: 31-32. [10] Wang H, Wang YH, Yang F, et al. Effect of acid-sensing ion channel 1a on the process of liver fibrosis under hyperglycemia. Biochem Biophys Res Commun, 2015, 468: 758-765. [11] Komokriengkrai M, Nopparat J, Vongvatcharanon U, et al. Effect of glabridin on collagen deposition in liver and amelioration of hepatocyte destruction in diabetes rats. Exp Ther Med, 2019, 18: 1164-1174. [12] 刘莎. RhoA/ROCK信号通路在高糖诱导大鼠肝星状细胞增殖和转分化中的作用. 河北医科大学, 2015. [13] Jud P, Sourij H. Therapeutic options to reduce advanced glycation end products in patients with diabetes mellitus: A review. Diabetes Res Clin Pract, 2019, 148: 54-63. [14] Ilan Y, Maron R, Tukpah AM, et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc Natl Acad Sci U S A, 2010, 107: 9765-9770. [15] Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity, 2014, 41: 529-542. [16] Liu Y, Yang Z, Lai P, et al. Bcl-6-directed follicular helper T cells promote vascular inflammatory injury in diabetic retinopathy. Theranostics, 2020, 10: 4250-4264. [17] Ceriello A. Hyperglycaemia: the bridge between non-enzymatic glycation and oxidative stress in the pathogenesis of diabetic complications. Diabetes, Nutrition & Metabolism, 1999,12:42-46 [18] Romero MJ, Platt DH, Tawfik HE, et al. Diabetes-induced coronary vascular dysfunction involves increased arginase activity. Circ Res, 2008, 102: 95-102. [19] Yaribeygi H, Atkin SL, Sahebkar A. A review of the molecular mechanisms of hyperglycemia-induced free radical generation leading to oxidative stress. J Cell Physiol, 2019, 234: 1300-1312. [20] Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001,414:799-806. [21] Alimujiang M, Yu XY, Yu MY, et al. Enhanced liver but not muscle OXPHOS in diabetes and reduced glucose output by complex I inhibition. J Cell Mol Med, 2020, 24: 5758-5771. [22] 李军汉, 高德润, 江玲玲, 等. 有氧和抗阻运动对糖尿病脂肪肝大鼠肝脏内质网应激的影响. 中国康复医学杂志, 2021, 36: 23-31. [23] 罗梓人, 贾旭, 刘红, 等. EGCG降低2型糖尿病大鼠肝细胞凋亡与内质网应激蛋白PERK及GRP78表达的实验研究. 茶叶通讯, 2020, 47: 665-674. [24] Jamalat(亚滋徳) YMI. 体外和体内磷酸肌酸可降低血糖水平,改善肝细胞内质网应激的糖尿病小鼠. 大连医科大学, 2018. [25] 田亚丽, 巴合提别克·托合塔尔拜克, 古丽海夏·哈勒玛合拜, 等. 鞣花酸促进自噬性清除改善2型糖尿病小鼠肝脏胰岛素信号通路. 时珍国医国药, 2019, 30: 2353-2356. [26] 谭淋励. 灯盏乙素调控自噬而缓解2型糖尿病肝脏损伤的机制研究.昆明医科大学, 2020. [27] Warr MR, Binnewies M, Flach J, et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 2013, 494: 323-327. |