肝脏 ›› 2024, Vol. 29 ›› Issue (1): 117-122.
吴姜杰, 齐家龙, 宋正己
收稿日期:
2023-04-27
出版日期:
2024-01-31
发布日期:
2024-03-01
基金资助:
Received:
2023-04-27
Online:
2024-01-31
Published:
2024-03-01
摘要: 铁死亡是一种全新的细胞程序性死亡模式,是以铁依赖性的脂质过氧化水平升高为主要特征的调节性细胞死亡。肝脏是人体内铁贮存量最大的脏器,铁稳态在疾病的进展中具有重要的作用。近年来,肝细胞铁死亡也引起了肝病研究领域的重视。本文阐述了铁死亡的机制及在肝病中的最新研究进展,为探索靶向铁死亡治疗肝病提供新的见解。
吴姜杰, 齐家龙, 宋正己. 肝细胞铁死亡在肝脏相关疾病的研究进展[J]. 肝脏, 2024, 29(1): 117-122.
[1] Asrani S K, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world[J]. J Hepatol, 2019, 70(1): 151-171. [2] Wang F S, Fan J G, Zhang Z, et al. The global burden of liver disease: the major impact of China[J]. Hepatology, 2014, 60(6): 2099-2108. [3] Dixon S J, Lemberg K M, Lamprecht M R, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072. [4] Vogt A S, Arsiwala T, Mohsen M, et al. On iron metabolism and its regulation[J]. Int J Mol Sci, 2021, 22(9):4591. [5] Mancias J D, Pontano Vaites L, Nissim S, et al. Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis[J]. Elife, 2015, 4:e10308. [6] Yin H, Xu L, Porter N A. Free radical lipid peroxidation: mechanisms and analysis[J]. Chem Rev, 2011, 111(10): 5944-5972. [7] Kuhn H, Banthiya S, Van Leyen K. Mammalian lipoxygenases and their biological relevance[J]. Biochim Biophys Acta, 2015, 1851(4): 308-330. [8] Doll S, Proneth B, Tyurina Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1): 91-98. [9] Gaschler M M, Stockwell B R. Lipid peroxidation in cell death[J]. Biochem Biophys Res Commun, 2017, 482(3): 419-425. [10] Liu J, Xia X, Huang P. xCT: a critical molecule that links cancer metabolism to redox signaling[J]. Mol Ther, 2020, 28(11): 2358-2366. [11] Friedmann Angeli J P, Schneider M, Proneth B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16(12): 1180-1191. [12] Friedmann Angeli J P, Conrad M. Selenium and GPX4, a vital symbiosis[J]. Free Radic Biol Med, 2018, 127: 153-159. [13] Bersuker K, Hendricks J M, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. [14] Kraft V A N, Bezjian C T, Pfeiffer S, et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin counteract ferroptosis through lipid remodeling[J]. ACS Cent Sci, 2020, 6(1): 41-53. [15] Mao C, Liu X, Zhang Y, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature, 2021, 593(7860): 586-590. [16] Dukić M, Radonjić T, Jovanović I, et al. Alcohol, inflammation, and microbiota in alcoholic liver disease[J]. Int J Mol Sci, 2023, 24(4):3735. [17] Liu C Y, Wang M, Yu H M, et al. Ferroptosis is involved in alcohol-induced cell death in vivo and in vitro[J]. Biosci Biotechnol Biochem, 2020, 84(8): 1621-1628. [18] Zhou Z, Ye T J, Bonavita G, et al. Adipose-specific lipin-1 overexpression renders hepatic ferroptosis and exacerbates alcoholic steatohepatitis in mice[J]. Hepatol Commun, 2019, 3(5): 656-669. [19] You Y, Liu C, Liu T, et al. FNDC3B protects steatosis and ferroptosis via the AMPK pathway in alcoholic fatty liver disease[J]. Free Radic Biol Med, 2022, 193(Pt 2): 808-819. [20] Zhou Z, Ye T J, Decaro E, et al. Intestinal SIRT1 deficiency protects mice from ethanol-induced liver injury by mitigating ferroptosis[J]. Am J Pathol, 2020, 190(1): 82-92. [21] Zhang Y, Zhao S, Fu Y, et al. Computational repositioning of dimethyl fumarate for treating alcoholic liver disease[J]. Cell Death Dis, 2020, 11(8): 641. [22] Loomba R, Friedman S L, Shulman G I. Mechanisms and disease consequences of nonalcoholic fatty liver disease[J]. Cell, 2021, 184(10): 2537-2564. [23] Videla L A, Valenzuela R. Perspectives in liver redox imbalance: toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action[J]. Biofactors, 2022, 48(2): 400-415. [24] Tsurusaki S, Tsuchiya Y, Koumura T, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis[J]. Cell Death Dis, 2019, 10(6): 449. [25] Qi J, Kim J W, Zhou Z, et al. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice[J]. Am J Pathol, 2020, 190(1): 68-81. [26] Li X, Wang T X, Huang X, et al. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity[J]. Liver Int, 2020, 40(6): 1378-1394. [27] Liu B, Yi W, Mao X, et al. Enoyl coenzyme A hydratase 1 alleviates nonalcoholic steatohepatitis in mice by suppressing hepatic ferroptosis[J]. Am J Physiol Endocrinol Metab, 2021, 320(5): E925-e937. [28] Zhu Z, Zhang Y, Huang X, et al. Thymosin beta 4 alleviates non-alcoholic fatty liver by inhibiting ferroptosis via up-regulation of GPX4[J]. Eur J Pharmacol, 2021, 908: 174351. [29] Komissarov A A, Karaseva M A, Roschina M P, et al. Individual expression of hepatitis A virus 3C protease induces ferroptosis in human cells in vitro[J]. Int J Mol Sci, 2021, 22(15):7906. [30] Liu G Z, Xu X W, Tao S H, et al. HBx facilitates ferroptosis in acute liver failure via EZH2 mediated SLC7A11 suppression[J]. J Biomed Sci, 2021, 28(1): 67. [31] Su H, Liu Y, Huang J. Ferroptosis-related gene SLC1A5 is a novel prognostic biomarker and correlates with immune microenvironment in HBV-related HCC[J]. J Clin Med, 2023, 12(5):1715. [32] Liu L, Lv Z, Wang M, et al. HBV enhances sorafenib resistance in hepatocellular carcinoma by reducing ferroptosis via SRSF2-mediated abnormal PCLAF splicing[J]. Int J Mol Sci, 2023, 24(4):3263. [33] Yamane D, Hayashi Y, Matsumoto M, et al. FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication[J]. Cell Chem Biol, 2022, 29(5): 799-810.e794. [34] Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(3): 151-166. [35] Mehta K J, Farnaud S J, Sharp P A. Iron and liver fibrosis: mechanistic and clinical aspects[J]. World J Gastroenterol, 2019, 25(5): 521-538. [36] Wang L, Zhang Z, Li M, et al. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation[J]. IUBMB Life, 2019, 71(1): 45-56. [37] Kong Z, Liu R, Cheng Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway[J]. Biomed Pharmacother, 2019, 109: 2043-2053. [38] Ho C H, Huang J H, Sun M S, et al. Wild bitter melon extract regulates LPS-induced hepatic stellate cell activation, inflammation, endoplasmic reticulum stress, and ferroptosis[J]. Evid Based Complement Alternat Med, 2021, 2021: 6671129. [39] Zhang Z, Guo M, Li Y, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells[J]. Autophagy, 2020, 16(8): 1482-1505. [40] Zhang Z, Yao Z, Wang L, et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy, 2018, 14(12): 2083-2103. [41] Zhang Z, Guo M, Shen M, et al. The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells[J]. Redox Biol, 2020, 36: 101619. [42] Yu Y, Jiang L, Wang H, et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis[J]. Blood, 2020, 136(6): 726-739. [43] Shen M, Li Y, Wang Y, et al. N(6)-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells[J]. Redox Biol, 2021, 47: 102151. [44] Zhu L, Chen D, Zhu Y, et al. GPX4-regulated ferroptosis mediates S100-induced experimental autoimmu ne hepatitis associated with the Nrf2/HO-1 signaling pathway[J]. Oxidative medicine and cellular longevity,2021, 2021: 6551069. [45] Jiang H, Fang Y, Wang Y, et al. FGF4 improves hepatocytes ferroptosis in autoimmune hepatitis mice via activation of CISD3[J]. International Immunopharmacology,2023, 116: 109762. [46] Zeng T, Deng G, Zhong W, et al. Indoleamine 2, 3-dioxygenase 1enhanceshepatocytes ferroptosis in acute immune hepatitis associated with excess nitrative stress[J]. Free Radical Biology and Medicine, 2020, 152: 668-679. [47] Dixon S J, Patel D N, Welsch M, et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis[J]. Elife, 2014, 3: e02523. [48] Louandre C, Ezzoukhry Z, Godin C, et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib[J]. Int J Cancer, 2013, 133(7): 1732-1742. [49] Bai T, Wang S, Zhao Y, et al. Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells[J]. Biochem Biophys Res Commun, 2017, 491(4): 919-925. [50] Sun J, Zhou C, Zhao Y, et al. Quiescin sulfhydryl oxidase 1 promotes sorafenib-induced ferroptosis in hepatocellular carcinoma by driving EGFR endosomal trafficking and inhibiting NRF2 activation[J]. Redox Biol, 2021, 41: 101942. [51] Tang H, Chen D, Li C, et al. Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells[J]. Int J Pharm, 2019, 572: 118782. [52] Ou W, Mulik R S, Anwar A, et al. Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma[J]. Free Radic Biol Med, 2017, 112: 597-607. [53] Louandre C, Marcq I, Bouhlal H, et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells[J]. Cancer Lett, 2015, 356(2 Pt B): 971-977. [54] Kong R, Wang N, Han W, et al. IFNγ-mediated repression of system xc(-) drives vulnerability to induced ferroptosis in hepatocellular carcinoma cells[J]. J Leukoc Biol, 2021, 110(2): 301-314. [55] Sun X, Niu X, Chen R, et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis[J]. Hepatology, 2016, 64(2): 488-500. [56] Jennis M, Kung C P, Basu S, et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model[J]. Genes Dev, 2016, 30(8): 918-930. [57] Zhao Y, Li M, Yao X, et al. HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications[J]. Cell Rep, 2020, 33(10): 108487. [58] Shang Y, Luo M, Yao F, et al. Ceruloplasmin suppresses ferroptosis by regulating iron homeostasis in hepatocellular carcinoma cells[J]. Cell Signal, 2020, 72: 109633. [59] Yao F, Deng Y, Zhao Y, et al. A targetable LIFR-NF-κB-LCN2 axis controls liver tumorigenesis and vulnerability to ferroptosis[J]. Nat Commun, 2021, 12(1): 7333. [60] Gao R, Kalathur R K R, Coto-Llerena M, et al. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis[J]. EMBO Mol Med, 2021, 13(12): e14351. [61] Zhang Y, Shi J, Liu X, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression[J]. Nat Cell Biol, 2018, 20(10): 1181-1192. [62] Wang Q, Guo Y, Wang W, et al. RNA binding protein DAZAP1 promotes HCC progression and regulates ferroptosis by interacting with SLC7A11 mRNA[J]. Exp Cell Res, 2021, 399(1): 112453. [63] Wang Q, Bin C, Xue Q, et al. GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis[J]. Cell Death Dis, 2021, 12(5): 426. [64] Qi W, Li Z, Xia L, et al. LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells[J]. Sci Rep, 2019, 9(1): 16185. [65] Liu Z, Wang Q, Wang X, et al. Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5[J]. Cell Death Discov, 2020, 6: 72. [66] Gout P W, Buckley A R, Simms C R, et al. Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: a new action for an old drug[J]. Leukemia, 2001, 15(10): 1633-1640. [67] Lachaier E, Louandre C, Godin C, et al. Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors[J]. Anticancer Res, 2014, 34(11): 6417-6422. [68] Gao M, Monian P, Quadri N, et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59(2): 298-308. [69] Weïwer M, Bittker J A, Lewis T A, et al. Development of small-molecule probes that selectively kill cells induced to express mutant RAS[J]. Bioorg Med Chem Lett, 2012, 22(4): 1822-1826. [70] Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7): 497-503. [71] Abrams R P, Carroll W L, Woerpel K A. Five-membered ring peroxide selectively initiates ferroptosis in cancer cells[J]. ACS Chem Biol, 2016, 11(5): 1305-1312. [72] Tonnus W, Meyer C, Steinebach C, et al. Dysfunction of the key ferroptosis-surveilling systems hypersensitizes mice to tubular necrosis during acute kidney injury[J]. Nat Commun, 2021, 12(1): 4402. [73] Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis[J]. Cell, 2018, 172(3): 409-422.e421. |
[1] | 熊号峰, 孙丽莹. 2023年亚太肝病学会肝脏疾病腹水管理指南介绍[J]. 肝脏, 2023, 28(8): 897-902. |
[2] | 陈淑佳, 祁胜宾. 髓系细胞触发受体-1在肝脏及相关炎症性疾病中的研究进展[J]. 肝脏, 2023, 28(7): 849-852. |
[3] | 夏巧云, 鲁晓岚. 肠道血管屏障破坏机制及其在肝脏疾病中作用的研究进展[J]. 肝脏, 2023, 28(7): 853-856. |
[4] | 王晓, 张凌云. 铁死亡通路关键基因在肝癌中的表达及临床意义[J]. 肝脏, 2023, 28(6): 660-664. |
[5] | 谢超, 王晓凡, 丛敏. 转铁蛋白受体-2在铁稳态中的作用研究进展[J]. 肝脏, 2023, 28(5): 604-606. |
[6] | 熊熙, 于乐成, 耿家宝. 细胞外囊泡在肝脏疾病中的临床应用进展[J]. 肝脏, 2023, 28(12): 1501-1504. |
[7] | 盛方, 史蔚青, 陈连云, 杨星辰. P21活化激酶在肝脏疾病中的研究进展[J]. 肝脏, 2023, 28(12): 1517-1520. |
[8] | 卢旺, 白丽, 陈煜. 巨噬细胞及其外泌体microRNAs在肝病中的作用[J]. 肝脏, 2022, 27(7): 733-737. |
[9] | 曾婉嘉, 吴昱, 陈香梅, 鲁凤民. RNA治疗和基因编辑技术在肝脏疾病中的应用[J]. 肝脏, 2022, 27(12): 1249-1252. |
[10] | 张璐懿, 龚作炯. 肝脏疾病中的自噬与能量代谢[J]. 肝脏, 2022, 27(1): 12-14. |
[11] | 余思邈,朱云,高含佳,杜宁,王立福,孙永强,景婧,王丽苹,张帆,王睿林. 精神心理障碍在肝病科住院患者中的现况研究[J]. 肝脏, 2017, 22(11): 1017-1020. |
[12] | 满冬亮, 王齐晖. 不同肝脏疾病血清GP73、AFP-L3、AFP及AFU水平的表达[J]. 肝脏, 2016, 21(5): 368-371. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||