肝脏 ›› 2024, Vol. 29 ›› Issue (11): 1413-1417.

• 其他肝病 • 上一篇    下一篇

肝移植早期移植物功能不全的影响因素及预测模型构建

刘盼, 刘娓, 张雪, 张韬, 苗素琴   

  1. 210002 南京 东部战区总医院麻醉科
  • 收稿日期:2024-02-10 出版日期:2024-11-30 发布日期:2025-01-10
  • 通讯作者: 苗素琴,Email:msq_gzj@126.com

Influencing factors and predictive model development for early allograft dysfunction in liver transplantation

LIU Pan, LIU Wei, ZHANG Xue, ZHANG Tao, MIAO Su-qin   

  1. Department of Anesthesiology, General Hospital of Eastern Theater Command, PLA, Nanjing 210002, China
  • Received:2024-02-10 Online:2024-11-30 Published:2025-01-10
  • Contact: MIAO Su-qin, Email: msq_gzj@126.com

摘要: 目的 探讨肝移植早期移植物功能不全(early allograft dysfunction,EAD)的影响因素并构建列线图预测模型。方法 纳入东部战区总医院2018年11月1日至2023年10月31日接受经典原位异体肝移植术的患者266例。比较肝移植术后发生EAD与未发生EAD患者的临床资料。多因素logistic回归分析术后发生EAD的影响因素。将独立危险因素纳入列线图模型,使用受试者工作特征曲线、校正曲线及拟合优度检验等方法评估预测效果。结果 266例受者患者中,发生EAD 74例(27.8%)。EAD组与非EAD组相比:供肝冷缺血时间(451.4±129.9)min比(408.8±127.2)min、手术结束时乳酸浓度(4.8±2.6)mmol/L比(3.9±2.2)mmol/L、MELD评分(22.1±5.4)分比(20.1±6.5)分、术前合并糖尿病为23例(31.1%) 比36例(18.8%)、术前血液中的尿酸浓度为299 μmol/L比260 μmol/L、术中出血量为2000 mL比1500 mL,差异有统计学意义(P<0.05)。多因素logistic回归分析发现,供肝冷缺血时间(OR=1.003,95% CI:1.001~1.005,P=0.009)、手术结束时动脉乳酸浓度(OR=1.167,95% CI:1.030~1.322,P=0.015)、MELD评分(OR=1.060,95% CI:1.011~1.112,P=0.016)、糖尿病(OR=2.186,95% CI:1.109~4.240,P=0.024)、术中出血量(OR=1.026,95% CI:1.002~1.049,P=0.030)是肝移植术后发生EAD的独立危险因素。将以上5个危险因素纳入列线图模型,模型的受试者工作曲线下面积为0.712(95% CI:0.642~0.781),较正曲线验证模型的一致性较好,临床决策曲线显示模型具有一定的临床实用性。结论 根据供肝冷缺血时间、手术结束时动脉乳酸浓度、MELD评分、糖尿病、术中出血量等构建的列线图具有一定的临床实用价值,可为诊断EAD提供参考。

关键词: 早期移植物功能不全, 肝移植, 预测模型

Abstract: Objective To identify key factors influencing early allograft dysfunction (EAD) in liver transplantation and to develop a nomogram model for its early detection. Methods This retrospective study included patients who underwent classic in situ allograft liver transplantation at Eastern Theater General Hospital from November 1, 2018, to October 31, 2023. Univariate analysis was performed, followed by multivariable logistic regression to identify significant variables. Independent risk factors were then incorporated into a nomogram models. The model’s predictive accuracy was evaluated using receiver operating characteristic(ROC) curves, calibration curves, and goodness-of-fit tests. Results A total of 266 liver transplant recipients were included, of whom 74 (27.8%) developed EAD. Univariate analysis indicated that, compared to the non-EAD group (n=192), the EAD group (n=74) had significantly higher values in the following variables: donor liver cold ischemia time (451.4±129.9min vs. 408.8±127.2min), lactate concentration at procedure end (4.8±2.6mmol/L vs. 3.9±2.2mmol/L), MELD score (22.1±5.4 vs. 20.1±6.5), preoperative diabetes [31.1% (23 cases) vs. 18.8% (36cases)], preoperative blood uric acid [299μmol/L, 95% CI (133~423) vs. 260μmol/L, 95% CI (204~384)], and intraoperative blood loss [2000ml, 95% CI (1500~2800) vs. 1500ml, 95%CI (1050~2550)] (P<0.05). Multivariablel logistic regression analysis identified five independent risk factors for EAD: donor liver cold ischemia time [OR=1.003, 95% CI (1.001~1.005), P=0.009], arterial lactate concentration at procedure end [OR=1.167, 95% CI (1.030~1.322), P=0.015], MELD score [OR=1.060. 95% CI (1.011~1.112), P=0.016], diabetes mellitus [OR=2.186, 95% CI (1.109~4.240), P=0.024], and intraoperative blood loss [OR=1.026, 95% CI (1.002~1.049), P=0.030]. These factors were incorporated into a nomogram model, achieving an area under the ROC curve of 0.712 (95% CI: 0.642~0.781), demonstrating good predictive performance. The clinical decision curve further confirmed the model’s clinical utility. Conclusion The nomogram model, incorporating donor liver cold ischemia time, arterial lactate concentration at surgery end, MELD score, diabetes mellitus, and intraoperative bleeding volume, demonstrates clinical utility and may serve as a useful tool for the early diagnosis of EAD.

Key words: Early allograft dysfunction, liver transplantation, predictive modeling