[1] Patel P V, Flamm S L. Alcohol-related liver disease including new developments [J]. Clin Liver Dis, 2023,27(1):157-172. [2] Wu X Q, Fan X D, Miyata T, et al. Recent advances in understanding of pathogenesis of alcohol-associated liver disease [J]. Annu Rev Pathol, 2023,18(1):411-438. [3] Alegre F, Pelegrin P, Feldstein A E. Inflammasomes in liver fibrosis [J]. Semin Liver Dis, 2017,37(2):119-127. [4] Bao T, He F, Zhang X, et al. Inulin exerts beneficial effects on non-alcoholic fatty liver disease via modulating gut microbiome and suppressing the lipopolysaccharide-toll-like receptor 4-mpsi-nuclear factor-kappaB-Nod-like receptor protein 3 pathway via gut-liver axis in mice [J]. Front Pharmacol, 2020,11:558525. [5] Zychlinsky A, Prevost M C, Sansonetti P J. Shigella flexneri induces apoptosis in infected macrophages [J]. Nature, 1992,358(6382):167-169. [6] Xia X J, Wang X, Cheng Z, et al. The role of pyroptosis in cancer: pro-cancer or pro-"host"? [J]. Cell Death Dis, 2019, 10(9):650. [7] Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases [J]. Signal Transduct Target Ther, 2021,6(1):128. [8] Cookson B T, Brennan M A. Pro-inflammatory programmed cell death [J]. Trends Microbiol, 2001,9(3):113-114. [9] Miao E A, Rajan J V, Aderem A. Caspase-1-induced pyroptotic cell death [J]. Immunol Rev, 2011, 243(1):206-214. [10] Erika R T, Pablo M. Molecular mechanisms that link oxidative stress, inflammation, and fibrosis in the liver [J]. Antioxidants (Basel), 2020,9(12):1279. [11] Gan C, Cai Q Y, Tang C W, et al. Inflammasomes and pyroptosis of liver cells in liver fibrosis [J]. Frontiers in Immunology, 2022,13:896473. [12] 丁世彬, 高丽云, 李玉春, 等. 慢性PM2.5暴露对C57BL/6J小鼠肺组织炎症和NLRP3炎性小体活性的影响[J]. 中国实验动物学报, 2019,27(4):444-449. [13] Yu P, Zhang X, Liu N, et al. Pyroptosis: mechanisms and diseases [J]. Signal Transduct Target Ther, 2021,6(1):128. [14] Mamun A A, Wu Y Q, Jia C, et al. Role of pyroptosis in liver diseases [J]. Int Immunopharmacol, 2020,84:106489. [15] Ribeiro M D, Szabo G. Role of the inflammasome in liver disease [J]. Annu Rev Pathol, 2022,17:345-365. [16] Rao Z P, Zhu Y T, Yang P, et al. Pyroptosis in inflammatory diseases and cancer [J]. Theranostics, 2022,12(9):4310-4329. [17] Shi J J, Gao W Q, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death [J]. Trends Biochem Sci, 2017,42(4):245-254. [18] Jiang M, Qi L, Li L, et al. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer [J]. Cell Death Discov, 2020,6:112. [19] Gong W H, Shi Y, Ren J J. Research progresses of molecular mechanism of pyroptosis and its related diseases [J]. Immunobiology, 2020,225(2):151884. [20] Shu B, Zhou Y X, Li H, et al. The METTL3/MALAT1/PTBP1/USP8/TAK1 axis promotes pyroptosis and M1 polarization of macrophages and contributes to liver fibrosis [J]. Cell Death Discovery, 2021,7(1):368. [21] Sun M, Kisseleva T. Reversibility of liver fibrosis [J]. Clin Res Hepatol Gastroenterol, 2015,39 Suppl(1):S60-S63. [22] Yang H, Wang J, Liu Z G. Multi-faceted role of pyroptosis mediated by inflammasome in liver fibrosis [J]. J Cell Mol Med, 2022,26(10):2757-2765. [23] Gaul S, Leszczynska A, Alegre F, et al. Hepatocyte pyroptosis and release of inflammasome particles induce stellate cell activation and liver fibrosis [J]. J Hepatol, 2021,74(1):156-167. [24] Calcagno D M, Chu A, Gaul S, et al. NOD-like receptor protein 3 activation causes spontaneous inflammation and fibrosis that mimics human NASH [J]. Hepatology (Baltimore, Md), 2022,76(3):727-741. [25] Wu J L, Lin S, Wan B, et al. Pyroptosis in liver disease: new insights into disease mechanisms [J]. Aging Dis, 2019,10(5):1094-1108. [26] Roehlen N, Crouchet E, Baumert T F. Liver fibrosis: mechanistic concepts and therapeutic perspectives [J]. Cells, 2020,9(4):875. [27] Li P Z, He K, Li J Z, et al. The role of Kupffer cells in hepatic diseases [J]. Mol Immunol, 2017,85:222-229. [28] Inzaugarat M E, Johnson C D, Holtmann T M, et al. NLR family pyrin domain-containing 3 inflammasome activation in hepatic stellate cells induces liver fibrosis in mice [J]. Hepatology, 2019,69(2):845-859. [29] Knorr J, Kaufmann B, Inzaugarat M E, et al. Interleukin-18 signaling promotes activation of hepatic stellate cells in mouse liver fibrosis [J]. Hepatology (Baltimore, Md), 2023,77(6):1968-1982. [30] Li J, Kong L, Huang H, et al. ASIC1a inhibits cell pyroptosis induced by acid-induced activation of rat hepatic stellate cells [J]. FBS Open Bio, 2020,10(6):1044-1055. [31] Wree A, McGeough M D, Inzaugarat M E, et al. NLRP3 inflammasome driven liver injury and fibrosis: Roles of IL-17 and TNF in mice [J]. Hepatology, 2018,67(2):736-749. [32] 齐婧姝, 平大冰, 孙鑫, 等. 中性粒细胞在肝纤维化中的作用 [J]. 肝脏, 2023, 28(9): 1127-1130. [33] Palacios-Macapagal D, Connor J, Mustelin T, et al. Cutting edge: eosinophils undergo caspase-1-mediated pyroptosis in response to necrotic liver cells [J]. J Immunol, 2017,199(3):847-853. [34] Lan P, Fan Y, Zhao Y, et al. TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury [J]. J Clin Invest, 2017,127(6):2222-2234. [35] Rodriguez-Antonio I, Lopez-Sanchez G N, Uribe M, et al. Role of the inflammasome, gasdermin D, and pyroptosis in non-alcoholic fatty liver disease [J]. J Gastroenterol Hepatol, 2021,36(10):2720-2727. [36] Wang R, Tang R, Li B, et al. Gut microbiome, liver immunology, and liver diseases [J]. Cellular & Molecular Immunology, 2021,18(1):4-17. [37] Tilg H, Adolph T E, Trauner M. Gut-liver axis: pathophysiological concepts and clinical implications [J]. Cell metabolism, 2022,34(11):1700-1718. [38] 马驰, 杨涓, 郑盛. 肠道菌群与肝脏疾病研究进展 [J]. 肝脏, 2024, 29(1): 113-116. [39] Racanelli V, Rehermann B. The liver as an immunological organ [J]. Hepatology, 2006,43(2 Suppl 1):S54-S62. [40] Bajaj J S. Alcohol, liver disease and the gut microbiota [J]. Nat Rev Gastroenterol Hepatol, 2019,16(4):235-246. [41] Zhang X, Coker O O, Chu E S, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites [J]. Gut, 2021,70(4):761-774. [42] Rao R. Endotoxemia and gut barrier dysfunction in alcoholic liver disease [J]. Hepatology, 2009,50(2):638-644. [43] Wrzosek L, Ciocan D, Hugot C, et al. Microbiota tryptophan metabolism induces aryl hydrocarbon receptor activation and improves alcohol-induced liver injury [J]. Gut, 2021,70(7):1299-1308. [44] Liu H, Meng W, Zhao D, et al. Study on mechanism of action of total flavonoids from Cortex Juglandis Mandshuricae against alcoholic liver disease based on "gut-liver axis" [J]. Front Pharmacol, 2023,13:1074286. [45] 高沿航. 酒精性肝病 [J]. 肝脏, 2024, 29(1): 21-26. [46] Liu SX, Liu H, Wang S, et al. Diallyl disulfide ameliorates ethanol-induced liver steatosis and inflammation by maintaining the fatty acid catabolism and regulating the gut-liver axis [J]. Food Chem Toxicol, 2022,164:113108. [47] Leclercq S, De S C, Delzenne N, et al. Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence [J]. Biological Psychiatry, 2014,76(9):725-733. [48] Milosevic I, Vujovic A, Barac A, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature [J]. Int J Mol Sci, 2019, 20(2):395. [49] Yu J. The functional role and translational potential of gut microbiota and microbial metabolites in liver diseases [J]. J Gastroenterol Hepatol, 2022,37(1):5-6. [50] Szabo G. Gut-liver axis beyond the microbiome: how the fungal mycobiome contributes to alcoholic liver disease [J]. Hepatology, 2018,68(6):2426-2428. [51] Nie Y, Liu Q, Zhang W, et al. Ursolic acid reverses liver fibrosis by inhibiting NOX4/NLRP3 inflammasome pathways and bacterial dysbiosis [J]. Gut Microbes, 2021,13(1):1972746. |