[1] Asrani SK, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world[J]. J Hepatol,2019,70(1):151-171. [2] Rinella ME, Lazarus JV, Ratziu V, et al. A multisociety Delphi consensus statement on new fatty liver disease nomenclature[J]. J Hepatol,2023,79(6):1542-1556. [3] Tacke F, Horn P, Wai-Sun Wong V, et al. EASL-EASD-EASO Clinical Practice Guidelines on the management of metabolic dysfunction-associated steatotic liver disease (MASLD)[J]. J Hepatol,2024. [4] Osonoi S, Takebe T. Organoid-guided precision hepatology for metabolic liver disease[J]. J Hepatol,2024,80(5):805-821. [5] Huch M, Dorrell C, Boj SF, et al. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration[J]. Nature,2013,494(7436):247-250. [6] Huch M, Gehart H, van Boxtel R, et al. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver[J]. Cell,2015,160(1-2):299-312. [7] Takebe T, Sekine K, Enomura M, et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant[J]. Nature,2013,499(7459):481-484. [8] Takebe T, Enomura M, Yoshizawa E, et al. Vascularized and Complex Organ Buds from Diverse Tissues via Mesenchymal Cell-Driven Condensation[J]. Cell Stem Cell, 2015,16(5):556-565. [9] Ouchi R, Togo S, Kimura M, et al. Modeling Steatohepatitis in Humans with Pluripotent Stem Cell-Derived Organoids[J]. Cell Metabolism,2019,30:374-384.e376. [10] Hess A, Gentile SD, Ben Saad A, et al. Single-cell transcriptomics stratifies organoid models of metabolic dysfunction-associated steatotic liver disease[J]. EMBO J,2023,42(24):e113898. [11] Ramli MNB, Lim YS, Koe CT, et al. Human Pluripotent Stem Cell-Derived Organoids as Models of Liver Disease[J]. Gastroenterology, 2020,159(4):1471-1486.e1412. [12] Bauer S, Wennberg Huldt C, Kanebratt KP, et al. Functional coupling of human pancreatic islets and liver spheroids on-a-chip: Towards a novel human ex vivo type 2 diabetes model[J]. Sci Rep,2017,7(1):14620. [13] Tao T, Deng P, Wang Y, et al. Microengineered Multi-Organoid System from hiPSCs to Recapitulate Human Liver-Islet Axis in Normal and Type 2 Diabetes[J]. Adv Sci (Weinh),2022,9(5):e2103495. [14] Wang Z, lv J, Zhang R, et al. Co-culture with fat cells induces cellular insulin resistance in primary hepatocytes[J]. Biochem Biophys Res Commun,2006,345(3):976-983. [15] Zhou L, Sell H, Eckardt K, et al. Conditioned medium obtained from in vitro differentiated adipocytes and resistin induce insulin resistance in human hepatocytes[J]. FEBS Lett,2007,581(22):4303-4308. [16] Hendriks D, Brouwers JF, Hamer K, et al. Engineered human hepatocyte organoids enable CRISPR-based target discovery and drug screening for steatosis[J]. Nat Biotechnol, 2023,41(11):1567-1581. [17] Tilson SG, Morell CM, Lenaerts AS, et al. Modeling PNPLA3-Associated NAFLD Using Human-Induced Pluripotent Stem Cells[J]. Hepatology,2021,74:2998-3017. [18] Prill S, Caddeo A, Baselli G, et al. The TM6SF2 E167K genetic variant induces lipid biosynthesis and reduces apolipoprotein B secretion in human hepatic 3D spheroids[J]. Sci Rep,2019,9(1):11585. [19] Kimura M, Azuma M, Zhang RR, et al. Digitalized Human Organoid for Wireless Phenotyping[J]. iScience,2018,4:294-301. [20] Kimura M, Iguchi T, Iwasawa K, et al. En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH[J]. Cell, 2022,185(22):4216-4232.e4216. |