肝脏 ›› 2024, Vol. 29 ›› Issue (6): 699-705.

• 肝纤维化及肝硬化 • 上一篇    下一篇

基于CT影像组学评估肝硬化患者肝脏储备功能的价值研究

陈凤, 李艳, 唐文勇, 翁旭丹, 吕敏丽, 仲建全   

  1. 643000 四川 自贡市第一人民医院放射科
  • 收稿日期:2023-06-16 出版日期:2024-06-30 发布日期:2024-08-28
  • 通讯作者: 仲建全,Email: 771808796@qq.com

Assessment of liver reserve function in patients with cirrhosis using CT imaging

CHEN Feng, LI Yan, TANG Wen-yong, WENG Xu-dan, LV Min-li, ZHONG Jian-quan   

  1. Department of Radiology, Zigong First People's Hospital, Sichuan 643000, China
  • Received:2023-06-16 Online:2024-06-30 Published:2024-08-28
  • Contact: ZHONG Jian-quan, Email: 771808796@qq.com

摘要: 目的 探讨基于CT门脉期图像分别提取全肝及肝段局部区域特征构建影像组学模型,以评估不同Child-Turcotte-Pugh(CTP)评分肝硬化患者肝脏储备功能的可行性研究,并比较两个模型的诊断效能。方法 回顾性分析2022年1月—8月在自贡市第一人民医院诊治的148例肝硬化的患者,按CTP评分将患者划分为CTP A级和CTP B+C级两组,并随机分为训练集(n=118)和验证集(n=30),不同感兴趣区ROI_t和ROI_s分别根据全肝和肝脏各段局部感兴趣区分割而得,提取出的特征均通过斯皮尔曼(Spearman)相关性系数和最小绝对收缩选择算子(LASSO)降维筛选出最有意义的特征,用LightGBM分类器建立预测不同CTP分级的影像组学模型,并用ROC曲线和DCA曲线来评价ROI_t和ROI_s两种模型的效能, 利用Delong检验比较两个模型的ROC曲线效能。结果 ROI_t模型由最终筛选出10个最有意义的特征建立,训练集的AUC(95%CI)、准确度、灵敏度、特异度为0.886(0.821~0.950)、0.828、0.849、0.826,验证集的AUC(95%CI)、准确度、灵敏度、特异度分别为0.895(0.797~0.992)、0.816、0.884、0.870。ROI_s模型由最终筛选出13个最有意义的特征建立,训练集的AUC(95%CI)、准确度、灵敏度、特异度为0.854(0.765~0.943)、0.743、0.8、0.853,验证集的AUC(95%CI)、准确度、灵敏度、特异度分别为0.700(0.575~0.823)、0.608、0.744、0.706。DeLong检验显示ROI_t模型和ROI_s模型的ROC曲线差异有统计学意义(P<0.05, P=0.0369),DCA曲线可见ROI_t模型和ROI_s模型验证集均有良好的预测CTP分级的能力,且ROI_t模型优于ROI_s模型。结论 根据对肝硬化患者CT门脉期图像全肝及肝段局部感兴趣区域提取特征建立的两种影像组学模型,均能有效评估不同CTP分级患者的肝脏储备功能,且根据对全肝感兴趣区建立的影像组学模型性能更优。

关键词: 肝硬化, 肝储备功能, 影像组学, 体层摄影术, X线计算机

Abstract: Objective To investigate the feasibility of developing an image omics model based on portal phase CT images to extract features from the whole liver and specific liver segments. The Objective is to assess liver reserve function in cirrhotic patients with varying Child-Turcotte-Pugh (CTP) scores. Additionally, the study compares the diagnostic efficacy of the two models. Methods A retrospective analysis was conducted on 148 patients diagnosed with cirrhosis, categorized into CTP A and CTP B+C groups based on CTP scores. All patients were randomly divided into a training set (n=118) and a validation set (n=30). Regions of interest(ROI_t and ROI_s)were defined according to the segmentation of the whole liver and individual liver segements, respectively. Features were extracted and screened using the Spearman correlation coefficient and the least absolute shrinkage and selection operator (LASSO) for dimensionality reduction. The efficiency of the ROI_t and ROI_s models was evaluated using reveiver operating characteristic(ROC) curves and decision curve analysis(DCA). The Delong test was employed to compare the ROC curve efficiencies of the two models. Results The ROI_t model was established by selecting the 10 most significant features. For the training set, the area under the curve(AUC ) was 0.886(95%CI: 0.821 ~ 0.950), with an accuracy of 0.828, sensitivity of 0.849, and specificity of 0.826. For the test, the AUC was 0.895(95%CI: 0.797 ~ 0.992), with an accuracy of, 0.816, sensitivity of 0.884, and specificity of 0.870. The ROI_s model was established by selecting the 13 most significant features. For the training set, the AUC was 0.854(95%CI: 0.765 ~ 0.943), with an accuracy of 0.743, sensitivity of 0.800, and specificity of 0.853. For the test set,the AUC was 0.700(95%CI: 0.575-0.823), with an accuracy of 0.608, sensitivity of 0.744, and specificity of 0.706, respectively. The DeLong test indicated a statistically significant difference bewteen the ROC curves of the ROI_t and ROI_s models(P=0.0369). The DCA demonstrated that both the ROI_t and ROI_s models had good predictive ability for CTP classification, with the ROI_t model outperforming .the ROI_s model. Conclusion Based on the most significant features extracted from the whole liver and local regions of interest in the portal phase CT images of cirrhotic patients, both imaging omics models established using the LightGBM classifier can effectively evaluate liver reserve function in patients with different CTP grades. Notably, the imaging omics model based on regions of interest in the whole liver demonstrates superior performance.

Key words: Cirrhosis, Liver reserve function, Imaging omics, Tomography, X-ray computer