[1] Yeh M L, Yu M L. From nonalcoholic steatohepatitis, metabolic dysfunction-associated fatty liver disease, to steatotic liver disease: updates of nomenclature and impact on clinical trials. Clin Mol Hepatol, 2023,29(4):969-972. [2] Wang S, Friedman S L. Found in translation-fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med, 2023,15(716):eadi0759. [3] Benedict M, Zhang X. Non-alcoholic fatty liver disease: an expanded review. World J. Hepatol. 9,715-732. [4] Friedman S L, Neuschwander-Tetri B A, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med, 2018,24(7):908-922. [5] Saklayen M G. The global epidemic of the metabolic syndrome. Curr Hypertens Rep, 2018,20(2):12. [6] Lemieux I, Després J P. Metabolic syndrome: past, present and future. Nutrients, 2020 Nov 14;12(11):3501. [7] Silveira Rossi J L, Barbalho S M, Reverete de Araujo R, et al. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab Res Rev, 2022,38(3):e3502. [8] Cho Y, Lee S Y. Useful biomarkers of metabolic syndrome. Int J Environ Res Public Health, 2022,19(22):15003. [9] Bovolini A, Garcia J, Andrade M A, et al. Metabolic syndrome pathophysiology and predisposing factors. Int J Sports Med, 2021,42(3):199-214. [10] Gupta A, Gupta V. Metabolic syndrome: what are the risks for humans? Biosci Trends, 2010,4(5):204-12. [11] Isaac R, Bandyopadhyay G, Rohm T V, et al. TM7SF3 controls TEAD1 splicing to prevent MASH-induced liver fibrosis. Cell Metab, 2024,36(5):1030-1043.e7. [12] Khomich O, Ivanov A V, Bartosch B. Metabolic hallmarks of hepatic stellate cells in liver fibrosis. Cells, 2019,9(1):24. [13] Peters K M, Wilson R B, Borradaile N M. Non-parenchymal hepatic cell lipotoxicity and the coordinated progression of non-alcoholic fatty liver disease and atherosclerosis. Curr Opin Lipidol, 2018,29(5):417-422. [14] Hui B, Zhang X, Dong D, et al. High-dose sinomenine attenuates ischemia/reperfusion-induced hepatic inflammation and oxidative stress in rats with diabetes mellitus. Immun Inflamm Dis, 2024,12(6):e1271. [15] Luo Z, Liu Y, Han X, et al. Mechanism of paeoniae radix alba in the treatment of non-alcoholic fatty liver disease based on sequential metabolites identification approach, network pharmacology, and Binding Affinity Measurement. Front Nutr, 2021,8:677659. [16] Pai S A, Munshi R P, Panchal F H, et al. Chrysin ameliorates nonalcoholic fatty liver disease in rats. Naunyn Schmiedebergs Arch Pharmacol, 2019,392(12):1617-1628. [17] Li X, Chen W, Ren J, et al. Effects of curcumin on non-alcoholic fatty liver disease: a scientific metrogy study. Phytomedicine, 2024,123:155241. [18] Wu Y L, Wu J X, Shen T T, et al. Quzhi formula alleviates nonalcoholic steatohepatitis by impairing hepatocyte lipid accumulation and inflammation via Bip/eIF2α signaling. J Clin Transl Hepatol, 2022,10(6):1050-1058. [19] Takahashi Y, Dungubat E, Kusano H, et al. Pathology and pathogenesis of metabolic dysfunction-associated steatotic liver disease-associated hepatic tumors. Biomedicines, 2023,11(10):2761. [20] 柴海生, 张琴. 祛脂三味方治疗非酒精性脂肪性肝炎的临床疗效及安全性分析[J]. 肝脏,2018,23(09):778-781. [21] Romero-Gómez M. Non-alcoholic steatohepatitis. Med Clin (Barc), 2022,159(8):388-395. [22] Kim K E, Lee J, Shin H J, et al. Lipocalin-2 activates hepatic stellate cells and promotes nonalcoholic steatohepatitis in high-fat diet-fed Ob/Ob mice. Hepatology, 2023,77(3):888-901. [23] Li R, Li J, Huang Y, et al. Polydatin attenuates diet-induced nonalcoholic steatohepatitis and fibrosis in mice. Int J Biol Sci, 2018,14(11):1411-1425. [24] Guo M Z, Li X S, Xu H R, et al. Rhein inhibits liver fibrosis induced by carbon tetrachloride in rats. Acta Pharmacol Sin, 2002,23(8):739-44. [25] Parola M, Pinzani M. Liver fibrosis: pathophysiology, pathogenetic targets and clinical issues. Mol Aspects Med, 2019,65:37-55. [26] Bataller R, Brenner D A. Liver fibrosis. J Clin Invest, 2005,115(2):209-18. [27] Hernandez-Gea V, Friedman S L. Pathogenesis of liver fibrosis. Annu Rev Pathol, 2011,6:425-56. [28] Caligiuri A, Gentilini A, Pastore M, et al. Cellular and molecular mechanisms underlying liver fibrosis regression. Cells, 2021,10(10):2759. [29] Parola M, Pinzani M. Liver fibrosis in NAFLD/NASH: from pathophysiology towards diagnostic and therapeutic strategies. Mol Aspects Med, 2024,95:101231. [30] Schuppan D. Liver fibrosis: common mechanisms and antifibrotic therapies. Clin Res Hepatol Gastroenterol, 2015,39 Suppl 1:S51-9. [31] Huynh J, Etemadi N, Hollande F, et al. The JAK/STAT3 axis: a comprehensive drug target for solid malignancies. Semin Cancer Biol, 2017,45:13-22. [32] Zhao J, Qi Y F, Yu Y R. STAT3: A key regulator in liver fibrosis. Ann Hepatol, 2021,21:100224. [33] Bala S, Zhuang Y, Nagesh P T, et al. Therapeutic inhibition of miR-155 attenuates liver fibrosis via STAT3 signaling. Mol Ther Nucleic Acids, 2023,33:413-427. [34] Tian S, Zhou X, Zhang M, et al. Mesenchymal stem cell-derived exosomes protect against liver fibrosis via delivering miR-148a to target KLF6/STAT3 pathway in macrophages. Stem Cell Res Ther, 2022,13(1):330. [35] Novak R, Plecko M, Bubic-Spoljar J, et al. Systemic inhibition of BMP1-3 decreases progression of CCl4-induced liver fibrosis in rats. Growth Factors, 2017,35(6):201-215. [36] Takezaki D, Morizane S, Ikeda K, et al. Co-occurrence of non-alcoholic steatohepatitis exacerbates psoriasis associated with decreased adiponectin expression in a murine model. Front Immunol, 2023,14:1214623. [37] Zhang Y, Chen Z, Shen Z, et al. ITGB6 promotes pancreatic fibrosis and aggravates the malignant process of pancreatic cancer via JAK2/STAT3 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol, 2024,397(8):6093-6106. |