摘要: 长链酰基辅酶A合成酶4(ACSL4)作为长链酰基辅酶A合成酶家族一员,目前被认为是铁死亡发生过程中的一个关键蛋白质,参与脂肪性肝病、肥胖、动脉粥样硬化和糖尿病等代谢性疾病的发病。同时,ACSL4通过调节脂质代谢参与各种生物过程,在肝癌、药物性肝损伤、自身免疫性肝病等各种肝病中起作用,作为肝病的治疗靶点具有巨大的潜力。
蔡玲燕, 曾欣. 长链酰基辅酶A合成酶4在肝病中的作用研究进展[J]. 肝脏, 2025, 30(5): 738-741.
[1] Soupene E, Kuypers F A. Mammalian long-chain acyl-CoA synthetases[J]. Exp Biol Med (Maywood), 2008, 233(5):507-521. [2] Yan S, Yang X F, Liu H L, et al. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update[J]. World J Gastroenterol, 2015, 21(12):3492-3498. [3] Kuwata H, Hara S. Role of acyl-CoA synthetase ACSL4 in arachidonic acid metabolism[J]. Prostaglandins Other Lipid Mediat, 2019, 144:106363. [4] Doll S, Proneth B, Tyurina Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13(1):91-98. [5] Golej D L, Askari B, Kramer F, et al. Long-chain acyl-CoA synthetase 4 modulates prostaglandin E2 release from human arterial smooth muscle cells[J]. J Lipid Res, 2011, 52(4):782-793. [6] Küch E M, Vellaramkalayil R, Zhang I, et al. Differentially localized acyl-CoA synthetase 4 isoenzymes mediate the metabolic channeling of fatty acids towards phosphatidylinositol[J]. Biochim Biophys Acta, 2014, 1841(2):227-239. [7] Kuwata H, Yoshimura M, Sasaki Y, et al. Role of long-chain acyl-coenzyme A synthetases in the regulation of arachidonic acid metabolism in interleukin 1β-stimulated rat fibroblasts[J]. Biochim Biophys Acta, 2014, 1841(1):44-53. [8] Kan C F, Singh A B, Stafforini D M, et al. Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation[J]. J Lipid Res, 2014, 55(8):1657-1667. [9] Killion E A, Reeves A R, El Azzouny M A, et al. A role for long-chain acyl-CoA synthetase-4 (ACSL4) in diet-induced phospholipid remodeling and obesity-associated adipocyte dysfunction[J]. Mol Metab, 2018, 9:43-56. [10] Ren H, Zhang H, Hua Z, et al. ACSL4 directs intramuscular adipogenesis and fatty acid composition in pigs[J]. Animals (Basel), 2022, 12(1):119. [11] Ansari I H, Longacre M J, Stoker S W, et al. Characterization of Acyl-CoA synthetase isoforms in pancreatic beta cells: gene silencing shows participation of ACSL3 and ACSL4 in insulin secretion[J]. Archives of Biochemistry and Biophysics, 2017, 618:32-43. [12] Eslam M, Newsome P N, Sarin S K, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement[J]. J Hepatol, 2020, 73(1):202-209. [13] Friedman S L, Neuschwander-Tetri B A, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7):908-922. [14] Stepanova M, Hossain N, Afendy A, et al. Hepatic gene expression of Caucasian and African-American patients with obesity-related non-alcoholic fatty liver disease[J]. Obes Surg,2010, 20(5):640-650. [15] Westerbacka J, Kolak M, Kiviluoto T, et al. Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects[J]. Diabetes, 2007, 56(11):2759-2765. [16] Tang J, Wang L, Shi M, et al. Study on the mechanism of shuganzhi tablet against nonalcoholic fatty liver disease and lipid regulation effects of its main substances in vitro[J]. J Ethnopharmacol, 2023, 316:116780. [17] Georgiadou A, Dunican C, Soro-Barrio P, et al. Comparative transcriptomic analysis reveals an association of gibel carp fatty liver with ferroptosis pathway[J]. BMC Genomics, 2021, 22(1):328. [18] Kan C F, Singh A B, Dong B, et al. PPARδ activation induces hepatic long-chain acyl-CoA synthetase 4 expression in vivo and in vitro[J]. Biochim Biophys Acta, 2015, 1851(5):577-587. [19] Sen P, Kan C F K, Singh A B, et al. Identification of p115 as a novel ACSL4 interacting protein and its role in regulating ACSL4 degradation[J]. J Proteomics, 2020, 229:103926. [20] Singh A B, Kan C F K, Kraemer F B, et al. Liver-specific knockdown of long-chain acyl-CoA synthetase 4 reveals its key role in VLDL-TG metabolism and phospholipid synthesis in mice fed a high-fat diet[J]. Am J Physiol Endocrinol Metab, 2019, 316(5):E880-E894. [21] Stockwell B R, Friedmann Angeli J P, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2):273-285. [22] Nelson J E, Wilson L, Brunt E M, et al. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease[J]. Hepatology, 2011, 53(2):448-457. [23] Valenti L, Moscatiello S, Vanni E, et al. Venesection for non-alcoholic fatty liver disease unresponsive to lifestyle counselling--A propensity score-adjusted observational study[J]. QJM, 2011, 104(2):141-149. [24] Tsurusaki S, Tsuchiya Y, Koumura T, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis[J]. Cell Death Dis, 2019, 10(6):449. [25] Qi J, Kim J W, Zhou Z, et al. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice[J]. Am J Pathol, 2020, 190(1):68-81. [26] Chitturi S, George J. Interaction of iron, insulin resistance, and nonalcoholic steatohepatitis[J]. Curr Gastroenterol Rep, 2003, 5(1):18-25. [27] Tong J, Lan X T, Zhang Z, et al. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: potential involvement of PANoptosis[J]. Acta Pharmacol Sin, 2023, 44(5):1014-1028. [28] Duan J, Wang Z, Duan R, et al. Therapeutic targeting of hepatic ACSL4 ameliorates NASH in mice[J]. Hepatology, 2022, 75(1):140-153. [29] Pavlova N N, Thompson C B. The emerging hallmarks of cancer metabolism[J]. Cell Metab, 2016, 23 (1):27-47. [30] Ndiaye H, Liu J Y, Hall A, et al. Immunohistochemical staining reveals differential expression of ACSL3 and ACSL4 in hepatocellular carcinoma and hepatic gastrointestinal metastases[J]. Biosci Rep, 2020, 40(4):BSR20200219. [31] Qin X, Zhang J, Lin Y, et al. Identification of MiR-211-5p as a tumor suppressor by targeting ACSL4 in Hepatocellular Carcinoma[J]. J Transl Med, 2020, 18(1):326. [32] Chen J, Ding C, Chen Y, et al. ACSL4 reprograms fatty acid metabolism in hepatocellular carcinoma via c-Myc/SREBP1 pathway[J]. Cancer Lett, 2021, 502:154-165. [33] Chen J, Ding C, Chen Y, et al. ACSL4 promotes hepatocellular carcinoma progression via c-Myc stability mediated by ERK/FBW7/c-Myc axis[J]. Oncogenesis, 2020, 9(4):42. [34] Cui M, Xiao Z, Sun B, et al. Involvement of cholesterol in hepatitis B virus X protein-induced abnormal lipid metabolism of hepatoma cells via up-regulating miR-205-targeted ACSL4[J]. Biochem Biophys Res Commun, 2014, 445(3):651-655. [35] Wang J, Wang Z, Yuan J, et al. The positive feedback between ACSL4 expression and O-GlcNAcylation contributes to the growth and survival of hepatocellular carcinoma[J]. Aging (Albany NY), 2020, 12(9):7786-7800. [36] Xia H, Lee K W, Chen J, et al. Simultaneous silencing of ACSL4 and induction of GADD45B in hepatocellular carcinoma cells amplifies the synergistic therapeutic effect of aspirin and sorafenib[J]. Cell Death Discov, 2017, 3:17058. [37] Li P, Zhang L, Guo Z, et al. Epimedium koreanum nakai-induced liver injury-A mechanistic study using untargeted metabolomics[J]. Front Pharmacol, 2022, 13:934057. [38] Tu C, Xu Z, Tian L, et al. Multi-omics integration to reveal the mechanism of hepatotoxicity induced by dictamnine[J]. Front Cell Dev Biol, 2021, 9:700120. [39] Pan Y, Tang P, Cao J, et al. Lipid peroxidation aggravates anti-tuberculosis drug-induced liver injury: evidence of ferroptosis induction[J]. Biochem Biophys Res Commun,2020, 533(4):1512-1518. [40] Zhao W, Lei M, Li J, et al. Yes-associated protein inhibition ameliorates liver fibrosis and acute and chronic liver failure by decreasing ferroptosis and necroptosis[J]. Heliyon,2023, 9(4):e15075. [41] Wei Y Y, Wang H R, Fan Y M, et al. Acute liver injury induced by carbon tetrachloride reversal by Gandankang aqueous extracts through nuclear factor erythroid 2-related factor 2 signaling pathway[J]. Ecotoxicol Environ Saf, 2023, 251:114527. [42] Silva C M, Ferrari G D, Alberici L C, et al. Cellular and molecular effects of silymarin on the transdifferentiation processes of LX-2 cells and its connection with lipid metabolism[J]. Mol Cell Biochem, 2020, 468(1-2):129-142. [43] Zhu L, Chen D, Zhu Y, et al. GPX4-regulated ferroptosis mediates S100-induced experimental autoimmune hepatitis associated with the Nrf2/HO-1 signaling pathway[J]. Oxid Med Cell Longev, 2021, 2021:6551069. [44] Zou S, Sun H, Peng Y, et al. Mu-opioid receptor alleviated ferroptosis in hepatic ischemia-reperfusion injury via the HIF-1α/KCNQ1OT1 axis[J]. Am J Physiol Cell Physiol, 2023, 324(4):C927-C940. [45] Chen L D, Wu R H, Huang Y Z, et al. The role of ferroptosis in chronic intermittent hypoxia-induced liver injury in rats[J]. Sleep Breath, 2020, 24(4):1767-1773. [46] Xu Y, Denning K L, Lu Y. PPARα agonist WY-14,643 induces the PLA2/COX-2/ACOX1 pathway to enhance peroxisomal lipid metabolism and ameliorate alcoholic fatty liver in mice[J]. Biochem Biophys Res Commun, 2022, 613:47-52. [47] Li S P, Li X Q, Chen X J, et al. Characterization and proteomic analyses of proinflammatory cytokines in a mouse model of liver transplant rejection[J]. Oxid Med Cell Longev, 2022, 2022:5188584. |
[1] | 郝磊, 王巍巍, 任洪伟, 赵胜祥. MR图像加权病理图像数字化模拟预测亚厘米肝癌切除术后复发的可行性分析[J]. 肝脏, 2025, 30(5): 620-623. |
[2] | 解维敏, 刘杰. 乙型肝炎肝硬化及原发性肝癌患者血清铁蛋白、Hcy、维生素B12的表达[J]. 肝脏, 2025, 30(5): 630-632. |
[3] | 方莹, 李武. miR-33a在代谢相关脂肪性肝病中的研究进展[J]. 肝脏, 2025, 30(5): 742-746. |
[4] | 张粉娜, 张心怡, 孙荣荣, 郝帅, 王辉, 贺娜, 钟岳. RNA结合蛋白SMG5与肝癌临床病理及免疫浸润相关性分析[J]. 肝脏, 2025, 30(4): 435-440. |
[5] | 龙春梅, 陈定贵, 郑中伟, 张秀军. 肝动脉化疗栓塞术联合卡瑞利珠单抗对中晚期肝癌的治疗效果评估[J]. 肝脏, 2025, 30(4): 441-445. |
[6] | 沈祥京, 苏海川. TACE、靶向免疫联合125I粒子植入在不可切除巨块型肝癌患者中的应用效果[J]. 肝脏, 2025, 30(4): 458-461. |
[7] | 刘丽, 唐飞扬, 汪秉轩, 赵浩南, 连邱健, 陈凤梅. 肝癌脊柱转移术后患者恐动症的现况调查及影响因素分析[J]. 肝脏, 2025, 30(4): 467-470. |
[8] | 牛兴杰, 刘志慧, 崔凤梅, 张国民, 刘耀敏. 原发性肝癌患者外周血清IL-6、IL-18和AFP水平变化对肺部感染的预测价值[J]. 肝脏, 2025, 30(4): 471-475. |
[9] | 陶婷, 孙娟. 表柔比星腹腔动脉灌注化疗联合信迪利单抗+贝伐珠单抗对不可切除肝癌患者的临床疗效[J]. 肝脏, 2025, 30(3): 336-339. |
[10] | 李大伟, 薛乐刚, 刘晓芬. 贝伐珠单抗联合信迪利单抗治疗原发性肝癌的疗效观察[J]. 肝脏, 2025, 30(3): 340-342. |
[11] | 顾勣, 李榕华, 朱海燕, 董莉. 肝动脉栓塞化疗联合三维适形放疗治疗中晚期HBV相关原发性肝癌患者的疗效观察[J]. 肝脏, 2025, 30(3): 366-370. |
[12] | 黄鑫, 韩民. 布-加综合征合并肝癌破裂出血1例[J]. 肝脏, 2025, 30(3): 413-415. |
[13] | 赵兴华, 任改改. 全内脏反位合并原发性肝癌行经皮微波消融治疗1例[J]. 肝脏, 2025, 30(3): 415-416. |
[14] | 付钦卿, 袁钦诗, 杨夏欣. 放射性核素氯化锶(89Sr)联合唑来膦酸对原发性肝癌骨转移的疗效及安全性[J]. 肝脏, 2025, 30(2): 222-225. |
[15] | 徐忆青, 陈园, 崔文琪, 张学敏. 琥珀酸缓解小鼠高脂饮食所致肥胖及脂肪肝的作用[J]. 肝脏, 2025, 30(2): 236-239. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||