[1] 邝胜利, 胡兵. 肝纤维化大鼠模型研究进展. 实验动物与比较医学, 2008(01):62-66. [2] 边艳琴, 曹红燕, 李建缘, 等. 脂肪酸代谢异常是二甲基亚硝胺诱导的大鼠肝纤维化发病机制之一. 世界科学技术-中医药现代化, 2016, 18(02):241-249. [3] Higashi T, Friedman SL, Hoshida Y. Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev, 2017, 121:27-42. [4] Ala-Kokko L, Pihlajaniemi T, Myers JC, et al. Gene expression of type I, III and IV collagens in hepatic fibrosis induced by dimethylnitrosamine in the rat. Biochem J, 1987, 244(1):75-79. [5] 边艳琴. 茵陈蒿汤及其组分复方抗肝纤维化的效应机制研究. 上海中医药大学, 2012. [6] Zhang Z, Sun ZZ, Xiao X, et al. Mechanism of BDE209-induced impaired glucose homeostasis based on gene microarray analysis of adult rat liver. Arch Toxicol, 2013, 87: 1557-1567. [7] 刘佳萱, 李彬彬, 张利芬, 等. 脂质代谢和肝纤维化关系的研究进展. 第二军医大学学报, 2018, 39(05):531-534. [8] Molenaar MR, Vaandrager AB, Helms JB. Some lipid droplets are more equal than others: different metabolic lipid droplet pools in hepatic stellate cells. Lipid Insights, 2017, 10:1178635317747281. [9] 边艳琴, 刘平, 孙明瑜. 基于方证相关理论解析肝硬化湿热内蕴病机. 世界科学技术-中医药现代化, 2016, 18(09):1477-1482. [10] Senda A, Mukai Y, Hayakawa T, et al. Angiotensin II receptor blockers inhibit the generation of epoxyeicosatrienoic acid from arachidonic acid in recombinant CYP2C9, CYP2J2 and human liver microsomes. Basic Clin Pharmacol Toxicol, 2017, 121: 239-245. [11] Louet M, Labbé C M, Fagnen C, et al. Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30. PloS one, 2018, 13(5):e0197249. [12] Ohnishi A, Murakami S, Akizuki S, et al. In vivo metabolic activity of CYP2C19 and CYP3A in relation to CYP2C19 genetic polymorphism in chronic liver disease. J Clin Pharmacol, 2005, 45: 1221-1229. [13] Frye RF, Zgheib NK, Matzke GR, et al. Liver disease selectively modulates cytochrome P450--mediated metabolism. Clin Pharmacol Ther, 2006, 80: 235-245. [14] Iso T, Maeda K, Hanaoka H, et al. Capillary endothelial fatty acid binding proteins 4 and 5 play a critical role in fatty acid uptake in heart and skeletal muscle. Arterioscler Thromb Vasc Biol, 2013, 33(11):2549-2557. [15] Thumser AE, Moore JB, Plant NJ. Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care, 2014, 17(2):124-129. [16] Ohata T, Yokoo H, Kamiyama T, et al. Fatty acid-binding protein 5 function in hepatocellular carcinoma through induction of epithelial-mesenchymal transition. Cancer Med, 2017, 6(5):1049-1061. [17] Jeong CY, Hah YS, Im Cho B, et al. Fatty acid-binding protein 5 promotes cell proliferation and invasion in human intrahepatic cholangiocarcinoma. Oncol Rep, 2012, 28(4):1283-1292. [18] Dallaglio K, Marconi A, Truzzi F, et al. E-FABP induces differentiation in normal human keratinocytes and modulates the differentiation process in psoriatic keratinocytes in vitro. Exp Dermatol, 2013, 22(4):255-261. [19] Song J, Zhang H, Wang Z, et al. The role of FABP5 in radiation-induced human skin fibrosis. Radiat Res, 2018, 189(2):177-186. [20] Belledant A, Hovington H, Garcia L, et al. The UGT2B28 sex-steroid inactivation pathway is a regulator of steroidogenesis and modifies the risk of prostate cancer progression. Eur Urol, 2016, 69(4):601-609. [21] Le PH, Kuo CJ, Hsieh YC, et al. Ages of hepatocellular carcinoma occurrence and life expectancy are associated with a UGT2B28 genomic variation. BMC cancer, 2019, 19: 1190. |