摘要: 慢性乙型肝炎(CHB)是由乙型肝炎病毒(HBV)感染引起的肝脏慢性炎症性疾病。本文就HBV的病毒学特征、乙型肝炎的自然史和免疫发病机制诊断标志物、目前的抗病毒治疗、开发中的新疗法及其预防和控制等进行综述。
陈静娜, 郝孟翰, 宋欣络, 王冰, 高攀, 钱宇妍, 陈岩松, 黄文俊, 赵萌, 张桠婕. 慢性乙型肝炎新的治疗方法[J]. 肝脏, 2023, 28(2): 135-145.
[1] Sheena BS, Hiebert L, Han H, et al. Global, regional, and national burden of hepatitis B, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol Hepatol,2022,7:796-829. [2] Nayagam S, Thursz M, Sicuri E, et al. Requirements for global elimination of hepatitis B: a modelling study. Lancet Infect Dis,2016,16:1399-408. [3] Tu T, Zhang H. Viral integrations in chronic hepatitis B infection: purposeless passenger or problematic promoter of persistence? Hepatology,2022,76:15-17. [4] Tu T, Zhang H, Urban S. Hepatitis B virus DNA integration: in vitro models for investigating viral pathogenesis and persistence. Viruses,2021,13:180. [5] Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers, 2021,7:6. [6] Iannacone M, Guidotti LG. Immunobiology and pathogenesis of hepatitis B virus infection. Nat Rev Immunol,2022,22:19-32. [7] Heim K, Neumann-Haefelin C, Thimme R, et al. Heterogeneity of HBV-specific CD8+ T-cell failure: implications for immunotherapy. Front Immunol,2019,10:2240. [8] Barili V, Vecchi A, Rossi M, et al. Unraveling the multifaceted nature of CD8 T cell exhaustion provides the molecular basis for therapeutic T cell reconstitution in chronic hepatitis B and C. Cells,2021,10:2563. [9] Burton AR, Pallett LJ, McCoy LE, et al. Circulating and intrahepatic antiviral B cells are defective in hepatitis B. J Clin Invest,2018,128:4588-603. [10] Salimzadeh L, Le Bert N, Dutertre CA, et al. PD-1 blockade partially recovers dysfunctional virus-specific B cells in chronic hepatitis B infection. J Clin Invest,2018,128:4573-4587. [11] Neumann-Haefelin C, Thimme R. Entering the spotlight: hepatitis B surface antigen-specific B cells. J Clin Invest,2018,128:4257-4259. [12] Cornberg M, Lok AS, Terrault NA,et al; 2019 EASL-AASLD HBV Treatment Endpoints Conference Faculty. Guidance for design and endpoints of clinical trials in chronic hepatitis B — report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference. J Hepatol, 2020,72:539-557. [13] Milich DR. The concept of immune tolerance in chronic hepatitis B virus infection is alive and well. Gastroenterology,2016,151:801-804. [14] Kennedy PTF, Sandalova E, Jo J, et al. Preserved T-cell function in children and young adults with immune-tolerant chronic hepatitis B. Gastroenterology,2012,143: 637-645. [15] Mason WS, Gill US, Litwin S, et al. HBV DNA integration and clonal hepatocyte expansion in chronic hepatitis B patients considered immune tolerant. Gastroenterology, 2016,151(5):986-998.e4. [16] Suslov A, Meier MA, Ketterer S, et al. Transition to HBeAg-negative chronic hepatitis B virus infection is associated with reduced cccDNA transcriptional activity. J Hepatol,2021,74:794-800. [17] Podlaha O, Gane E, Brunetto M, et al. Large-scale viral genome analysis identifies novel clinical associations between hepatitis B virus and chronically infected patients. Sci Rep, 2019,9:10529. [18] Meier MA, Calabrese D, Suslov A, et al. Ubiquitous expression of HBsAg from integrated HBV DNA in patients with low viral load. J Hepatol,2021,75:840-847. [19] Yeo YH, Ho HJ, Yang HI, et al. Factors associated with rates of HBsAg seroclearance in adults with chronic HBV infection: a systematic review and meta-analysis. Gastroenterology, 2019,156(3):635-646.e9. [20] Papatheodoridis GV, Sypsa V, Dalekos GN, et al. Hepatocellular carcinoma prediction beyond year 5 of oral therapy in a large cohort of Caucasian patients with chronic hepatitis B. J Hepatol, 2020,72: 1088-1096. [21] Chen CJ, Yang HI, Su J, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA, 2006,295:65-73. [22] Choi GH, Kim GA, Choi J, et al. High risk of clinical events in untreated HBeAg-negative chronic hepatitis B patients with high viral load and no significant ALT elevation. Aliment Pharmacol Ther, 2019,50:215-226. [23] Vaillant A. HBsAg, subviral particles, and their clearance in establishing a functional cure of chronic hepatitis B virus infection. ACS Infect Dis,2021,7:1351-68. [24] Lago BV, Mello FC, Kramvis A, et al. Hepatitis B virus subgenotype A1: evolutionary relationships between Brazilian, African and Asian isolates. PLoS One, 2014,9(8):e105317. [25] Kramvis A, Paraskevis D. Subgenotype A1 of HBV-tracing human migrations in and out of Africa. Antivir Ther,2013,18:513-5221. [26] Glebe D, Goldmann N, Lauber C, et al. HBV evolution and genetic variability: impact on prevention, treatment and development of antivirals. Antiviral Res,2021,186:104973. [27] Revill PA, Tu T, Netter HJ, et al. The evolution and clinical impact of hepatitis B virus genome diversity. Nat Rev Gastroenterol Hepatol, 2020,17:618-634. [28] Tseng TC, Liu CJ, Yang HC, et al. Serum hepatitis B surface antigen levels help predict disease progression in patients with low hepatitis B virus loads. Hepatology,2013,57:441-450. [29] Zhang H, Tu T. Approaches to quantifying hepatitis B virus covalently closed circular DNA. Clin Mol Hepatol,2022,28: 135-149. [30] Ghany MG, King WC, Lisker-Melman M, et al. Comparison of novel biomarkers with conventional HBV markers among untreated adults with chronic hepatitis B in North America. Hepatology,2021,74: 2395-2409. [31] Kramvis A, Chang KM, Dandri M, et al. A roadmap for serum biomarkers for hepatitis B virus: current status and future outlook. Nat Rev Gastroenterol Hepatol,2022,19:727-745. [32] Butler EK, Gersch J, McNamara A, et al. Hepatitis B virus serum DNA and RNA levels in nucleos(t)ide analog-treated or untreated patients during chronic and acute infection. Hepatology, 2018,68:2106- [33] Scholtès C, Hamilton AT, Plissonnier ML, et al. Performance of the cobas HBV RNA automated investigational assay for the detection and quantification of circulating HBV RNA in chronic HBV patients. J Clin Virol,2022,150-151:105150. [34] Giersch K, Allweiss L, Volz T, et al. Serum HBV pgRNA as a clinical marker for cccDNA activity. J Hepatol,2017,66:460-462. [35] Carey I, Gersch J, Wang B, et al. Pregenomic HBV RNA and hepatitis B corerelated antigen predict outcomes in hepatitis B e antigen-negative chronic hepatitis B patients suppressed on nucleos(t)ide analogue therapy. Hepatology, 2020,72:42- [36] Mak LY, Wong DKH, Cheung KS, et al. Review article: hepatitis B core-related antigen (HBcrAg): an emerging marker for chronic hepatitis B virus infection. Aliment Pharmacol Ther, 2018,47:43-54. [37] Inoue T, Kusumoto S, Iio E, et al. Clinical efficacy of a novel, high-sensitivity HBcrAg assay in the management of chronic hepatitis B and HBV reactivation. J Hepatol,2021,75:302-310. [38] Lok J, Dusheiko G, Carey I, et al. Review article: novel biomarkers in hepatitis B infection. Aliment Pharmacol Ther,2022,56:760-776. [39] Terrault NA, Lok ASF, McMahon BJ, et al. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology,2018,67:1560-1599. [40] Sarin SK, Kumar M, Lau GK, et al. Asian-Pacific clinical practice guidelines on the management of hepatitis B: a 2015 update. Hepatol Int,2016,10:1-98. [41] European Association for the Study of the Liver. EASL 2017 clinical practice guidelines on the management of hepatitis B virus infection. J Hepatol,2017,67: 370-398. [42] Lee MH, Yang HI, Liu J, et al. Prediction models of long-term cirrhosis and hepatocellular carcinoma risk in chronic hepatitis B patients: risk scores integrating host and virus profiles. Hepatology,2013,58:546-554. [43] Chow N, Wong D, Lai CL, et al. Effect of antiviral treatment on hepatitis B virus integration and hepatocyte clonal expansion. Clin Infect Dis,2023,76(3):e801-e809. [44] Hsu YC, Suri V, Nguyen MH, et al. Inhibition of viral replication reduces transcriptionally active distinct hepatitis B virus integrations with implications on host gene dysregulation. Gastroenterology,2022,162(4):1160-1170.e1. [45] Wong GLH, Tse YK, Wong VWS, et al. Long-term safety of oral nucleos(t)ide analogs for patients with chronic hepatitis B: a cohort study of 53,500 subjects. Hepatology,2015,62:684-693. [46] Agarwal K, Brunetto M, Seto WK, et al. 96 weeks treatment of tenofovir alafenamide vs. tenofovir disoproxil fumarate for hepatitis B virus infection. J Hepatol,2018,68:672-681. [47] Suzuki K, Suda G, Yamamoto Y, et al. Effect of switching from tenofovir disoproxil fumarate to tenofovir alafenamide on lipid profiles in patients with hepatitis B. PLoS One, 2022,17(1):e0261760. [48] Dandri M, Petersen J. cccDNA maintenance in chronic hepatitis B — targeting the matrix of viral replication. Infect Drug Resist,2020,13:3873-386. [49] Hsu YC, Yeh ML, Wong GLH, et al. Incidences and determinants of functional cure during entecavir or tenofovir disoproxil fumarate for chronic hepatitis B. J Infect Dis,2021,224:1890-1899. [50] Yip TC, Wong GL, Chan HL, et al. HBsAg seroclearance further reduces hepatocellular carcinoma risk after complete viral suppression with nucleos(t)ide analogues. J Hepatol, 2019,70:361-370. [51] Yuan BH, Li RH, Huo RR, et al. Lower risk of hepatocellular carcinoma with tenofovir than entecavir treatment in subsets of chronic hepatitis B patients: an updated meta-analysis. J Gastroenterol Hepatol,2022,37:782-794. [52] Kim WR, Telep LE, Jump B, et al. Risk of hepatocellular carcinoma in treatmentna?ve chronic hepatitis B patients receiving tenofovir disoproxil fumarate versus entecavir in the United States. Aliment Pharmacol Ther,2022,55:828-835. [53] Choi WM, Yip TCF, Lim YS, et al. Methodological challenges of performing meta-analyses to compare the risk of hepatocellular carcinoma between chronic hepatitis B treatments. J Hepatol, 2022,76:186-194. [54] Park ES, Lee AR, Kim DH, et al. Identification of a quadruple mutation that confers tenofovir resistance in chronic hepatitis B patients. J Hepatol,2019,70: 1093-1102. [55] Velkov S, Protzer U, Michler T. Global occurrence of clinically relevant hepatitis B virus variants as found by analysis of publicly available sequencing data. Viruses,2020,12:1344. [56] Sonneveld MJ, Chiu SM, Park JY, et al. Probability of HBsAg loss after nucleo(s)tide analogue withdrawal depends on HBV genotype and viral antigen levels. J Hepatol, 2022,76:1042-1050. [57] Berg T, Simon KG, Mauss S, et al. Long-term response after stopping tenofovir disoproxil fumarate in non-cirrhotic HBeAg-negative patients — FINITE study. J Hepatol,2017,67:918-924. [58] Papatheodoridis GV, Lekakis V, Voulgaris T, et al. Hepatitis B virus reactivation associated with new classes of immunosuppressants and immunomodulators: a systematic review, meta-analysis, and expert opinion. J Hepatol,2022,77:1670-1689. [59] Lucifora J, Xia Y, Reisinger F, et al. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science,2014,343:1221-1228. [60] Marcellin P, Ahn SH, Ma X, et al. Combination of tenofovir disoproxil fumarate and peginterferon α-2a increases loss of hepatitis B surface antigen in patients with chronic hepatitis B. Gastroenterology,2016,150(1):134-144.e10. [61] Maini MK, Burton AR. Restoring, releasing or replacing adaptive immunity in chronic hepatitis B. Nat Rev Gastroenterol Hepatol,2019,16:662-675. [62] Bazinet M, P?ntea V, Placinta G, et al. Safety ad efficacy of 48 weeks REP 2139 or REP 2165, tenofovir disoproxil, and pegylated interferon alfa-2a in patients with chronic HBV infection na?ve to nucleos(t)ide therapy. Gastroenterology,2020,158:2180-2194. [63] Taverniti V, Ligat G, Debing Y, et al. Capsid assembly modulators as antiviral agents against HBV: molecular mechanisms and clinical perspectives. J Clin Med,2022,11: 1349. [64] Hui RWH, Mak LY, Seto WK, et al. RNA interference as a novel treatment strategy for chronic hepatitis B infection. Clin Mol Hepatol,2022,28:408-424. [65] Yuen MF, Schiefke I, Yoon JH, et al. RNA interference therapy with ARC-520 results in prolonged hepatitis B surface antigen response in patients with chronic hepatitis B infection. Hepatology,2020,72: 19-31. [66] Yuen MF, Asselah T, Jacobson IM, et al. Effects of the siRNA JNJ-3989 and/or the capsid assembly modulator JNJ-6379 on viral markers of chronic hepatitis B: results from the REEF-1 study. In: Proceedings and Abstracts of the 2022 International Liver Congress, June 22-26, 2022. London: European Association for the Study of the Liver, 2022. [67] Agarwal K, Buti M, Van Bommel F, et al. Efficacy and safety of finite 48-week treatment with the siRNA JNJ-3989 and the capsid assembly modulator (CAM-N) JNJ-6379 in HBeAg negative virologically suppressed (VS) chronic hepatitis B (CHB) patients: results from the REEF-2 study. In: Proceedings and Abstracts of the 2022 AASLD Liver Meeting, November 4-6, 2022. Washington, DC: American Association for the Study of Liver Disease, 2022. [68] Agarwal K, Lok J, Carey I, et al. A case of HBV-induced liver failure in the REEF-2 phase II trial: implications for finite treatment strategies in HBV ‘cure.’ J Hepatol,2022,77:245-248. [69] Yuen MF, Heo J, Jang JW, et al. Safety, tolerability and antiviral activity of the antisense oligonucleotide bepirovirsen in patients with chronic hepatitis B: a phase 2 randomized controlled trial. Nat Med,2021,27:1725-1734. [70] Yuen MF, Lim SG, Plesniak R, et al. Efficacy and safety of bepirovirsen in chronic hepatitis B infection. N Engl J Med,2022,387:1957-1968. [71] Gehring AJ, Protzer U. Targeting innate and adaptive immune responses to cure chronic HBV infection. Gastroenterology,2019,156:325-337. [72] Michler T, Kosinska AD, Festag J, et al. Knockdown of virus antigen expression increases therapeutic vaccine efficacy in high-titer hepatitis B virus carrier mice. Gastroenterology, 2020,158(6):1762-1775.e9. [73] Aliabadi E, Urbanek-Quaing M, et al. Impact of HBsAg and HBcrAg levels on phenotype and function of HBV-specific T cells in patients with chronic hepatitis B virus infection. Gut, 2022,71:2300-2312. [74] Wong GL-H, Hui VW-K, Yip TC-F, et al. Universal HBV vaccination dramatically reduces the prevalence of HBV infection and incidence of hepatocellular carcinoma. Aliment Pharmacol Ther,2022,56: 869-877. [75] Shimakawa Y, Veillon P, Birguel J, et al. Residual risk of mother-to-child transmission of hepatitis B virus infection despite timely birth-dose vaccination in Cameroon (ANRS 12303): a single-centre, longitudinal observational study. Lancet Glob Health,2022,10(4):e521-e529. |
[1] | 肖丽, 王欣茹, 咸建春. 基于HBV DNA与ALT治疗阈值下调可能难以达到降低HBV相关终末期肝病发生的目的[J]. 肝脏, 2023, 28(2): 155-156. |
[2] | 刘云霄, 符艳, 牛丽娜, 窦婧, 王晓忠. 核苷(酸)类似物治疗与乙型肝炎病毒相关肝癌术后生存的meta分析[J]. 肝脏, 2023, 28(2): 181-188. |
[3] | 巩子菱, 邹志强. 血清HBV RNA水平预测抗HBV治疗效果的研究进展[J]. 肝脏, 2023, 28(2): 261-263. |
[4] | 方芷欣, 邓芮, 孙剑. 血清HBV RNA的基础与临床应用研究进展[J]. 肝脏, 2023, 28(1): 30-32. |
[5] | 陆伟, 张占卿, 阎俪, 黄丹, 林维佳, 周新兰, 丁荣蓉, 王雁冰, 李秀芬. 血清定量HBsAg和HBV DNA预测HBeAg阳性慢性HBV感染显著肝炎活动的性能比较[J]. 肝脏, 2023, 28(1): 86-94. |
[6] | 邓浩辉, 楼燕, 李晓强, 邱玖香. 慢性丙型肝炎和慢性乙型肝炎患者ITPA基因多态性与聚乙二醇干扰素抗病毒治疗所致血小板减少症相关性分析[J]. 肝脏, 2023, 28(1): 95-99. |
[7] | 李亚萍, 崔丹丹, 苟国娥, 蔺咏梅, 祖红梅, 徐光华, 高晓红, 党双锁. 艾米替诺福韦治疗慢性乙型肝炎患者的早期疗效:一项真实世界多中心临床研究[J]. 肝脏, 2023, 28(1): 100-104. |
[8] | 黄燕萍, 张琴, 孙明瑜. 慢性乙型肝炎相关性肝细胞癌的危险因素研究进展[J]. 肝脏, 2023, 28(1): 124-127. |
[9] | 文夏杰, 鲁凤民, 贾继东. 慢性乙型肝炎治愈临床研究进展[J]. 肝脏, 2022, 27(9): 947-949. |
[10] | 李玉坤, 顾智强, 姜倩倩, 陈香梅, 鲁凤民. 整合的HBV DNA在慢性乙型肝炎患者病毒复制及慢性感染维持中的潜在作用[J]. 肝脏, 2022, 27(9): 953-955. |
[11] | 郑惠芳, 林升龙, 郑嵩, 黄雨欣, 肖珊颖, 叶子杰, 林明华, 高海兵. HBV相关慢加急性肝衰竭并发细菌感染的预测模型的构建[J]. 肝脏, 2022, 27(9): 966-972. |
[12] | 高政聪, 雷作汉, 郭舜琴. 低血红蛋白/红细胞分布宽度比值对HBV相关失代偿期肝硬化预后的评价[J]. 肝脏, 2022, 27(9): 1004-1007. |
[13] | 谢志伟, 陆霭琪, 杨可立, 陈彬彬, 关玉娟, 肖光明, 李剑萍. 乙型肝炎病毒相关慢加急性肝衰竭患者血清miRNA差异表达谱及其预后预测价值[J]. 肝脏, 2022, 27(8): 853-857. |
[14] | 卢嘉惠, 张丛楠, 何鹏园, 欧梦党, 黄明星. 富马酸丙酚替诺福韦治疗慢性乙型肝炎合并脂肪肝的疗效及安全性[J]. 肝脏, 2022, 27(8): 858-862. |
[15] | 张磊, 黄育红, 罗凌, 汪丽萍, 方春华, 冉斌, 李应. 长期抗病毒治疗的慢性乙型肝炎患者血清TIMP-1和M-CSF水平变化[J]. 肝脏, 2022, 27(8): 863-867. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||