[1] Fang T, Wang H, Pan X, et al. Mouse models of nonalcoholic fatty liver disease (NAFLD): pathomechanisms and pharmacotherapies[J]. Int J Biol Sci,2022,18(15):5681-5697. [2] Korbecki J, Barczak K, Gutowska I, et al. CXCL1: gene, promoter, regulation of expression, mRNA stability, regulation of activity in the intercellular space[J]. Int J Mol Sci,2022,23(2):792. [3] Korbecki J, Szatkowska I, Kupnicka P, et al. The importance of CXCL1 in the physiological state and in noncancer diseases of the oral cavity and abdominal organs[J]. Int J Mol Sci,2022,23(13):7151. [4] Korbecki J, Kupnicka P, Chlubek M, et al. CXCR2 receptor: regulation of expression, signal transduction, and involvement in cancer[J]. Int J Mol Sci,2022,23(4):2168. [5] Jablonska J, Wu C F, Andzinski L, et al. CXCR2-mediated tumor-associated neutrophil recruitment is regulated by IFN-β[J]. Int J Cancer,2014,134(6):1346-1358. [6] Nunemaker C S, Chung H G, Verrilli G M, et al. Increased serum CXCL1 and CXCL5 are linked to obesity, hyperglycemia, and impaired islet function[J]. J Endocrinol,2014,222(2):267-276. [7] Korbecki J, Maruszewska A, Bosiacki M, et al. The potential importance of CXCL1 in the physiological state and in noncancer diseases of the cardiovascular system, respiratory system and skin[J]. Int J Mol Sci, 2022,24(1):205. [8] Hwang S, He Y, Xiang X, et al. Interleukin-22 ameliorates neutrophil-driven nonalcoholic steatohepatitis through multiple targets[J]. Hepatology,2020,72(2):412-429. [9] Shi W P, Ju D, Li H, et al. CD147 promotes CXCL1 expression and modulates liver fibrogenesis[J]. Int J Mol Sci,2018,19(4):1145. [10] Suriano F, Vieira-Silva S, Falony G, et al. Novel insights into the genetically obese (ob/ob) and diabetic (db/db) mice: two sides of the same coin[J]. Microbiome, 2021,9(1):147. [11] Lindström P. The physiology of obese-hyperglycemic mice[ob/ob mice] [J]. ScientificWorldJournal,2007,7:666-685. [12] Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and obesity: role and clinical implication[J]. Front Endocrinol (Lausanne),2021,12:585887. [13] Dodd G T, Decherf S, Loh K, et al. Leptin and insulin act on POMC neurons to promote the browning of white fat[J]. Cell, 2015,160(1-2):88-104. [14] Pereira S, Cline D L, Glavas M M, et al. Tissue-specific effects of leptin on glucose and lipid metabolism[J]. Endocr Rev, 2021,42(1):1-28. [15] Frühbeck G. Intracellular signalling pathways activated by leptin[J]. Biochem J, 2006,393(Pt 1):7-20. [16] Hwang S, He Y, Xiang X, et al. Interleukin-22 ameliorates neutrophil-driven nonalcoholic steatohepatitis through multiple targets[J]. Hepatology, 2020,72(2):412-429. [17] Perfield J W 2nd, Ortinau L C, Pickering R T, et al. Altered hepatic lipid metabolism contributes to nonalcoholic fatty liver disease in leptin-deficient Ob/Ob mice[J]. J Obes, 2013,2013:296537. [18] Gao Q, Jia Y, Yang G, et al. PPARα-Deficient ob/ob obese mice become more obese and manifest severe hepatic steatosis due to decreased fatty acid oxidation[J]. Am J Pathol, 2015,185(5):1396-1408. [19] Leclercq I A, Farrell G C, Schriemer R,et al.Leptin is essential for the hepatic fibrogenic response to chronic liver injury[J].Journal of Hepatology,2002,37(2):206-213. [20] Li S, Zhuge A, Wang K, et al. Obeticholic acid and ferrostatin-1 differentially ameliorate non-alcoholic steatohepatitis in AMLN diet-fed ob/ob mice[J]. Front Pharmacol, 2022,13:1081553. [21] Abe N, Kato S, Tsuchida T, et al. Longitudinal characterization of diet-induced genetic murine models of non-alcoholic steatohepatitis with metabolic, histological, and transcriptomic hallmarks of human patients[J]. Biol Open, 2019,8(5):bio041251. [22] Sanches S C, Ramalho L N, Augusto M J, et al. Nonalcoholic Steatohepatitis: a Search for Factual Animal Models[J]. Biomed Res Int, 2015,2015:574832. [23] Di Spiezio A, Sandin E S, Dore R, et al. The LepR-mediated leptin transport across brain barriers controls food reward[J]. Mol Metab, 2018,8:13-22. [24] Zhou H R, Wang T X, Hao Y Y, et al. Jinlida granules reduce obesity in db/db mice by activating beige adipocytes[J]. Biomed Res Int, 2022,2022:4483009. [25] Michurina S V, Ishenko I J, Klimontov V V, et al. Linagliptin alleviates fatty liver disease in diabetic db/db mice[J]. World J Diabetes, 2016,7(19):534-546. [26] Kobayashi G, Okamura T, Majima S, et al. Effects of royal jelly on gut dysbiosis and NAFLD in db/db mice[J]. Nutrients, 2023,15(11):2580. [27] Qiao P, Jia Y, Ma A, et al. Dapagliflozin protects against nonalcoholic steatohepatitis in db/db mice[J]. Front Pharmacol, 2022,13:934136. [28] Hearn T. ALMS1 and Alström syndrome: a recessive form of metabolic, neurosensory and cardiac deficits[J]. J Mol Med (Berl), 2019,97(1):1-17. [29] Álvarez-Satta M, Castro-Sánchez S, Valverde D. Alström syndrome: current perspectives[J]. Appl Clin Genet, 2015,8:171-179. [30] Meurs K M, Williams B G, DeProspero D, et al. A deleterious mutation in the ALMS1 gene in a naturally occurring model of hypertrophic cardiomyopathy in the Sphynx cat[J]. Orphanet J Rare Dis, 2021,16(1):108. [31] Collin G B, Marshall J D, King B L, et al. The Alstr?m syndrome protein, ALMS1, interacts with α-actinin and components of the endosome recycling pathway[J]. PLoS One, 2012,7(5):e37925. [32] Haczeyni F, Barn V, Mridha A R, et al. Exercise improves adipose function and inflammation and ameliorates fatty liver disease in obese diabetic mice[J]. Obesity,2015,23:1845-1855. [33] Haczeyni F, Poekes L, Wang H, et al. Obeticholic acid improves adipose morphometry and inflammation and reduces steatosis in dietary but not metabolic obesity in mice[J]. Obesity (Silver Spring), 2017,25(1):155-165. [34] Mridha A R, Wree A, Robertson A A B, et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice[J]. J Hepatol, 2017,66(5):1037-1046. [35] Larter C Z, Yeh M M, Haigh W G, et al. Dietary modification dampens liver inflammation and fibrosis in obesity-related fatty liver disease[J]. Obesity,2013,21: 1189-1199. [36] Gillard J, Clerbaux L A, Nachit M, et al. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice[J]. JHEP Rep, 2021,4(1):100387. [37] Pichon C, Nachit M, Gillard J, et al. Impact of L-ornithine L-aspartate on non-alcoholic steatohepatitis-associated hyperammonemia and muscle alterations[J]. Front Nutr, 2022,9:1051157. [38] Rosenthal S B, Liu X, Ganguly S, et al. Heterogeneity of HSCs in a Mouse Model of NASH[J]. Hepatology, 2021,74(2):667-685. [39] Ganguly S, Muench G A, Shang L, et al. Nonalcoholic steatohepatitis and HCC in a hyperphagic mouse accelerated by western diet[J]. Cell Mol Gastroenterol Hepatol, 2021,12(3):891-920. [40] Peterson R G, Jackson C V, Zimmerman K M, et al. Glucose dysregulation and response to common anti-diabetic agents in the FATZO/Pco mouse[J]. PLoS One, 2017,12(6):e0179856. [41] Sun G, Jackson C V, Zimmerman K, et al. The FATZO mouse, a next generation model of type 2 diabetes, develops NAFLD and NASH when fed a Western diet supplemented with fructose[J]. BMC Gastroenterol, 2019,19(1):41. [42] Droz B A, Sneed B L, Jackson C V, et al. Correlation of disease severity with body weight and high fat diet in the FATZO/Pco mouse[J]. PLoS One, 2017,12(6):e0179808. [43] Zhang G, Wang X, Chung T Y, et al. Carbon tetrachloride (CCl4) accelerated development of non-alcoholic fatty liver disease (NAFLD)/steatohepatitis (NASH) in MS-NASH mice fed western diet supplemented with fructose (WDF)[J]. BMC Gastroenterol, 2020,20(1):339. [44] Miller M J, Harding-Theobald E, DiBattista J V, et al. Progression to cirrhosis is similar among all ages in nonalcoholic fatty liver disease, but liver-related events increase with age[J]. Hepatol Commun, 2023,7(6):e0148. |