肝脏 ›› 2024, Vol. 29 ›› Issue (9): 1150-1153.
敬进华, 金星, 马旭, 张福礼, 赵雪静, 毕刚, 戴伯华, 刘瑛, 郭峰, 丁国宁
收稿日期:
2024-04-15
出版日期:
2024-09-30
发布日期:
2024-11-13
通讯作者:
丁国宁, Email: 290289087@qq.com
Received:
2024-04-15
Online:
2024-09-30
Published:
2024-11-13
摘要: 非酒精性脂肪性肝病(NAFLD)是世界范围内最常见的肝脏疾病之一,影响全球30%的人口,可以表现为单纯性脂肪变性、非酒精性脂肪性肝炎(NASH)、肝纤维化、肝硬化或肝细胞癌(HCC) ,后期严重影响患者的生活质量。然而多项研究结果均表明,肠道菌群失调可参与对肝脏的多重攻击,并在NAFLD的发病机制中起关键作用。本文重点讨论了基于肠-肝轴理论,肠道菌群与NAFLD不同进展阶段的关联,探讨其在NAFLD治疗中的潜在意义。
敬进华, 金星, 马旭, 张福礼, 赵雪静, 毕刚, 戴伯华, 刘瑛, 郭峰, 丁国宁. 基于肠-肝轴理论探讨NAFLD进展与肠道菌群的联系[J]. 肝脏, 2024, 29(9): 1150-1153.
[1] Wiest R, Albillos A, Trauner M,et al. Targeting the gut-liver axis in liver disease[J]. J Hepatol,2017,67(5):1084-1103. [2] Zhou J, Zhou F, Wang W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology,2020,71(5):1851-1864. [3] Wong W K, Chan W K. Nonalcoholic fatty liver disease: a global perspective[J]. Clin Ther,2021,43(3):473-499. [4] 刘莉,郝欣.针灸联合益生菌对非酒精性脂肪肝治疗的临床疗效[J].中国老年学杂志,2022,42(8):1853-1856. [5] Tripathi A, Debelius J, Brenner D A,et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol,2018,15(7):397-411. [6] Ji Y, Yin Y, Sun L,et al. The molecular and mechanistic insights based on gut-liver axis: nutritional target for non-alcoholic fatty liver disease (NAFLD) improvement[J]. Int J Mol Sci,2020,21(9):3066. [7] Suk K T, Kim D J. Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease[J]. Expert Rev Gastroenterol Hepatol,2019,13(3):193-204. [8] Leng J, Tian H J, Fang Y,et al. Amelioration of non-alcoholic steatohepatitis by atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide combination is associated with reducing endotoxin gut leakage[J]. Front Cell Infect Microbiol,2022,12:827516. [9] He S, Cui S, Song W,et al. Interleukin-17 weakens the NAFLD/NASH process by facilitating intestinal barrier restoration depending on the gut microbiota[J]. mBio,2022,13(2):e0368821. [10] Kaushal K,Agarwal S,Sharma S,et al.Demonstration of gut-barrier dysfunction in early stages of non-alcoholic fatty liver disease: a proof-of-concept study[J]. J Clin Exp Hepatol,2022,12(4):1102-1113. [11] Lechner S, Yee M, Limketkai B N, et al. Fecal microbiota transplantation for chronic liver diseases: current understanding and future direction[J]. Dig Dis Sci,2020,65(3):897-905. [12] Fang J,Yu C H,Li X J,et al.Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications[J]. Front Cell Infect Microbiol,2022,12:997018. [13] Mouries J, Brescia P, Silvestri A,et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development[J]. J Hepatol,2019,71(6):1216-1228. [14] Li X,Su C,Jiang Z,et al.Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome[J]. NPJ Biofilms Microbiomes,2021,7(1):36. [15] Cao Y N, Yue S S, Wang A Y,et al. Antrodia cinnamomea and its compound dehydroeburicoic acid attenuate nonalcoholic fatty liver disease by upregulating ALDH2 activity[J]. J Ethnopharmacol,2022,292:115146. [16] Ding N, Wang K, Jiang H,et al. AGK regulates the progression to NASH by affecting mitochondria complex I function[J]. Theranostics,2022,12(7): 3237-3250. [17] Shi C, Pei M, Wang Y,et al. Changes of flavin-containing monooxygenases and trimethylamine-N-oxide may be involved in the promotion of non-alcoholic fatty liver disease by intestinal microbiota metabolite trimethylamine[J]. Biochem Biophys Res Commun,2022,594:1-7. [18] Fiorucci S, Distrutti E.The pharmacology of bile acids and their receptors[J]. Handb Exp Pharmacol,2019,256:3-18. [19] Yang Z H,Liu F,Zhu X R,et al. Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis[J]. World J Gastroenterol,2021,27(24):3609-3629. [20] Sun Y, Zhu M, Zhao H,et al. Serum fibroblast growth factor 19 and total bile acid concentrations are potential biomarkers of hepatocellular carcinoma in patients with type 2 diabetes mellitus[J]. Biomed Res Int, 2020,1751989. [21] Alferink L J M, Radjabzadeh D, Erler N S,et al. Microbiomics, metabolomics, predicted metagenomics, and hepatic steatosis in a population-based study of 1,355 adults[J]. Hepatology,2021,73(3):968-982. [22] Frost F,Kacprowski T,Rühlemann M,et al.Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function[J]. Gut,2021,70(3):522-530. [23] Demir M, Lang S, Hartmann P,et al. The fecal mycobiome in non-alcoholic fatty liver disease[J]. J Hepatol,2022,76(4):788-799. [24] Lee G, You H J, Bajaj J S, et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD[J]. Nat Commun,2020,11(1):4982. [25] Liu C, Wang Y L,Yang Y Y,et al. Novel approaches to intervene gut microbiota in the treatment of chronic liver diseases[J]. FASEB J,2021,35(10):e21871. [26] Philips C A, Pande A, Shasthry S M,et al. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study[J]. Clin Gastroenterol Hepatol,2017,15(4):600-602. [27] Lee N Y, Suk K T. The role of the gut microbiome in liver cirrhosis treatment[J]. Int J Mol Sci,2020,22(1):199. [28] Bajaj J S.Altered microbiota in cirrhosis and its relationship to the development of infection[J]. Clin Liver Dis (Hoboken),2019,14(3):107-111. [29] Acharya C, Bajaj J S. Altered microbiome in patients with cirrhosis and complications[J]. Clin Gastroenterol Hepatol,2019,17(2):307-321. [30] Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis[J]. Annu Rev Med,2016,67:103-117. [31] Notarnicola M, Osella A R, Caruso M G,et al. Nonalcoholic fatty liver disease: focus on new biomarkers and lifestyle interventions[J]. Int J Mol Sci,2021,22(8):3899. [32] Leung H, Long X, Ni Y,et al. Risk assessment with gut microbiome and metabolite markers in NAFLD development[J]. Sci Transl Med,2022,14(648):eabk0855. [33] Li C Y, Dempsey J L, Wang D,et al. PBDEs altered gut microbiome and bile acid homeostasis in male C57BL/6 mice[J]. Drug Metab Dispos,2018,46(8):1226-1240. [34] De Filippo C, Cavalieri D, Di Paola M,et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proc Natl Acad Sci USA,2010,107(33):14691-14696. [35] Jensen T, Abdelmalek M F, Sullivan S, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease[J]. J Hepatol,2018,68(5):1063-1075. [36] Sellmann C, Priebs J, Landmann M,et al. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time[J]. J Nutr Biochem,2015,26(11):1183-1192. [37] Febbraio M A, Karin M. "Sweet death": Fructose as a metabolic toxin that targets the gut-liver axis[J]. Cell Metab,2021,33(12):2316-2328. [38] Chassaing B, Compher C, Bonhomme B, et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome[J]. Gastroenterology,2022,162(3):743-756. [39] Von Schwartzenberg R J,Bisanz J E,Lyalina S,et al.Caloric restriction disrupts the microbiota and colonization resistance[J].Nature,2021,595(7866):272- 277. [40] Jordan S, Tung N, Casanova-Acebes M, et al. Dietary intake regulates the circulating inflammatory monocyte pool[J].Cell,2019,178(5):1102-1114. e17. [41] Fabbiano S, Suárez-Zamorano N, Chevalier C, et al. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements[J]. Cell Metab,2018,28(6):907-921.e7. [42] Cai H, Qin Y L, Shi Z Y,et al. Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial[J]. BMC Gastroenterol,2019,19(1):219. [43] Colca J R, McDonald W G, Adams W J. MSDC-0602K, a metabolic modulator directed at the core pathology of non-alcoholic steatohepatitis[J]. Expert Opin Investig Drugs,2018,27(7):631-636. [44] Vuppalanchi R,Chalasani N.Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Selected practical issues in their evaluation and management[J]. Hepatology,2009,49(1):306-317. [45] Milosevic I, Vujovic A, Barac A,et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature[J]. Int J Mol Sci,2019,20(2):395. |
[1] | 聂子杰, 沈潇垚, 胡晨, 陈光明. 非酒精性脂肪肝基因改造小鼠模型的研究进展[J]. 肝脏, 2024, 29(9): 1146-1149. |
[2] | 黄震霆, 徐小萍, 吴静. 从非酒精性脂肪性肝病到代谢功能障碍相关脂肪性肝病的命名讨论[J]. 肝脏, 2024, 29(8): 900-904. |
[3] | 丁荣蓉, 周新兰, 李秀芬, 黄丹, 林维佳, 陈良. 非肥胖型与肥胖型非酒精性脂肪肝血清脂质组学研究[J]. 肝脏, 2024, 29(8): 975-979. |
[4] | 陈光文, 蔡晓波, 陆伦根. 肝窦内皮细胞在非酒精性脂肪性肝炎中的作用[J]. 肝脏, 2024, 29(8): 998-1001. |
[5] | 钱晓婧, 陈颖, 刘王振祖, 张家祺, 蒋元烨, 胡诚. 等热量低碳水化合物高蛋白饮食对非酒精性脂肪性肝病血清脂质的影响[J]. 肝脏, 2024, 29(6): 706-713. |
[6] | 曾达武, 郑莹莹, 朱月永. 肝细胞癌与肠道菌群:不容忽视的瘤内菌群[J]. 肝脏, 2024, 29(5): 499-501. |
[7] | 龚丽, 胡凤. FibroScan及肝纤维化指数在NAFLD合并HBV感染患者肝纤维化评估中的应用[J]. 肝脏, 2024, 29(5): 512-515. |
[8] | 丁剑波, 李秀惠. 白细胞在非酒精性脂肪性肝病发生及进展中的作用[J]. 肝脏, 2024, 29(5): 599-602. |
[9] | 徐衍, 饶慧瑛. 从非酒精性脂肪性肝病到代谢相关脂肪性肝病的变迁[J]. 肝脏, 2024, 29(3): 255-257. |
[10] | 李雨蓉, 钟昌明, 王杰. 无创评分预测肝脂肪变性的优势与不足[J]. 肝脏, 2024, 29(3): 260-262. |
[11] | 董琳菲, 王艳. 细胞衰老在非酒精性脂肪性肝病中的作用与机制[J]. 肝脏, 2024, 29(2): 149-151. |
[12] | 李卫侠, 陈克敏. MRI成像技术在非酒精性脂肪性肝病患者肝脏评估中的作用[J]. 肝脏, 2024, 29(2): 154-156. |
[13] | 邢翔宇, 牛俊奇. 代谢相关脂肪性肝病药物研发进展[J]. 肝脏, 2024, 29(1): 5-9. |
[14] | 赵东志, 李国东, 常媛媛, 曹哲丽, 赵雅娟. 非酒精性脂肪性肝病患者C/RL-r、APRI、FIB-4水平与肝纤维化发生的相关性[J]. 肝脏, 2024, 29(1): 68-72. |
[15] | 吴彬彬, 徐小琴, 顾星星, 解其华. 脂肪肝诊断中ElastPQ弹性成像技术检测肝硬度与肝纤维化评分及FIB-4指数的相关性分析[J]. 肝脏, 2024, 29(1): 73-76. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 29
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 137
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||