[1] Dhar D, Baglieri J, Kisseleva T, et al. Mechanisms of liver fibrosis and its role in liver cancer[J]. Exp Biol Med (Maywood), 2020, 245(2): 96-108. [2] 李明芳, 李曹飞, 左东泽, 等. 肝纤维化的发病机理及相关信号转导机制研究进展[J]. 中国比较医学杂志, 2023, 33(8): 147-152. [3] Liu S, Yao S, Yang H, et al. Autophagy: regulator of cell death[J]. Cell Death Dis, 2023, 14(10): 648. [4] Wang L, Klionsky D J, Shen H M. The emerging mechanisms and functions of microautophagy[J]. Nat Rev Mol Cell Biol, 2023, 24(3): 186-203. [5] 殷玉, 许志亮, 刘刚. 线粒体自噬在纤维化疾病中作用的研究进展[J]. 中华实用诊断与治疗杂志, 2022, 36(1): 102-105. [6] Onishi M, Yamano K, Sato M, et al. Molecular mechanisms and physiological functions of mitophagy[J]. EMBO J, 2021, 40(3): e104705. [7] Jin K, Shi Y, Zhang H, et al. A TNFα/Miz1-positive feedback loop inhibits mitophagy in hepatocytes and propagates non-alcoholic steatohepatitis[J]. J Hepatol, 2023, 79(2): 403-416. [8] Li H Y, Gao Y X, Wu J C, et al. Single-cell transcriptome reveals a novel mechanism of C-Kit+-liver sinusoidal endothelial cells in NASH[J]. Cell Biosci, 2024, 14(1): 31. [9] Undamatla R, Fagunloye O, Chen J, et al. Reduced mitophagy is an early feature of NAFLD and liver-specific PARKIN knockout hastens the onset of steatosis, inflammation and fibrosis[J]. Sci Rep, 2023, 13(1): 7575. [10] Qiu B, Zhong Z, Dou L, et al. Knocking out Fkbp51 decreases CCl4-induced liver injury through enhancement of mitochondrial function and Parkin activity[J]. Cell Biosci, 2024, 14(1): 1. [11] Liu P, Lin H, Xu Y, et al. Frataxin-mediated PINK1-parkin-dependent mitophagy in hepatic steatosis: the protective effects of quercetin[J]. Mol Nutr Food Res, 2018, 62(16): 1800164. [12] 雍慧. TDP-43异常聚集介导的线粒体损伤在CCl4诱导的肝纤维化中的作用及其机制研究[D]. 济南: 山东大学, 2022. [13] Shin G C, Lee H M, Kim N, et al. Paraoxonase-2 agonist vutiglabridin promotes autophagy activation and mitochondrial function to alleviate non-alcoholic steatohepatitis[J]. Br J Pharmacol, 2024, 181(19): 3717-3742. [14] Dou S Y, Zhang J N, Xie X L, et al. MitoQ inhibits hepatic stellate cell activation and liver fibrosis by enhancing PINK1/parkin-mediated mitophagy[J]. Open Med, 2021, 16(1): 1718-1727. [15] 豆市英. 辅酶Q对肝星状细胞活化及肝纤维化作用及机制研究[D]. 石家庄: 河北医科大学, 2023. [16] Li H, Guo Y, Su W, et al. The mitochondria-targeted antioxidant MitoQ ameliorates inorganic arsenic-induced DCs/Th1/Th2/Th17/Treg differentiation partially by activating PINK1-mediated mitophagy in murine liver[J]. Ecotoxicol Environ Saf, 2024, 277: 116350. [17] Li R, Xin T, Li D, et al. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: the role of the ERK-CREB pathway and Bnip3-mediated mitophagy[J]. Redox Biol, 2018, 18: 229-243. [18] Wang Q, Bu Q, Liu M, et al. XBP1-mediated activation of the STING signalling pathway in macrophages contributes to liver fibrosis progression[J]. JHEP Rep, 2022, 4(11): 100555. [19] 袁方. 骨化三醇促进肝样细胞成熟及缓解酒精性肝细胞损伤的机制研究[D]. 合肥市: 中国科学技术大学, 2021. [20] Li R, Dai Z, Liu X, et al. Interaction between dual specificity phosphatase-1 and cullin-1 attenuates alcohol-related liver disease by restoring p62-mediated mitophagy[J]. Int J Biol Sci, 2023, 19(6): 1831-1845. [21] Zhou W, Yang X, Yin Y, et al. Ursodeoxycholic acid loaded dual-modified graphene oxide nanocomposite alleviates cholestatic liver injury through inhibiting hepatocyte apoptosis[J]. Colloids Surf B Biointerfaces, 2024, 238: 113904. [22] Luangmonkong T, Suriguga S, Mutsaers H A, et al. Targeting oxidative stress for the treatment of liver fibrosis[J]. Rev Physiol Biochem Pharmacol, 2018, 175: 71-102. [23] 王超, 王晨晖, 吴昊. 选择性自噬在肝纤维化中的作用[J]. 生命的化学, 2022, 42(12): 2248-2258. [24] Sun K, Xu L, Jing Y, et al. Autophagy-deficient Kupffer cells promote tumorigenesis by enhancing mtROS-NF-κB-IL1α/β-dependent inflammation and fibrosis during the preneoplastic stage of hepatocarcinogenesis[J]. Cancer Lett, 2017, 388: 198-207. [25] Bowling J L, Skolfield M C, Riley W A, et al. Temporal integration of mitochondrial stress signals by the PINK1: parkin pathway[J]. BMC Mol Cell Biol, 2019, 20: 1-21. [26] Ding Q, Xie X L, Wang M M, et al. The role of the apoptosis-related protein BCL-B in the regulation of mitophagy in hepatic stellate cells during the regression of liver fibrosis[J]. Exp Mol Med, 2019, 51(1): 1-13. [27] Lee J H, Kim K M, Jung E H, et al. Parkin-mediated mitophagy by TGF-β is connected with hepatic stellate cell activation[J]. Int J Mol Sci, 2023, 24(19): 14826. [28] Song Y, Zhao Y, Wang F, et al. Autophagy in hepatic fibrosis[J]. Biomed Res Int, 2014, 2014(1): 436242. [29] Wu H, Chen G, Wang J, et al. TIM-4 interference in Kupffer cells against CCL4-induced liver fibrosis by mediating Akt1/Mitophagy signalling pathway[J]. Cell Prolif, 2020, 53(1): e12731. [30] Qiu Y N, Wang G H, Zhou F, et al. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy[J]. Ecotoxicol Environ Saf, 2019, 167: 178-187. [31] Wang Z J, Yu H, Hao J J, et al. PM(2.5) promotes Drp1-mediated mitophagy to induce hepatic stellate cell activation and hepatic fibrosis via regulating miR-411[J]. Exp Cell Res, 2021, 407(2): 112828. [32] Mohankumar S, Patel T. Extracellular vesicle long noncoding RNA as potential biomarkers of liver cancer[J]. Brief Funct Genomics, 2016, 15(3): 249-256. [33] Szabo G, Momen-Heravi F. Extracellular vesicles in liver disease and potential as biomarkers and therapeutic targets[J]. Nat Rev Gastroenterol Hepatol, 2017, 14(8): 455-466. [34] Yang L, Gao Y L, Jiang S, et al. Aflatoxin B1-exposed hepatocyte-derived extracellular vesicles: initiating hepatic stellate cell-mediated liver fibrosis through a p53-Parkin-dependent mitophagy pathway[J]. Ecotoxicol Environ Saf, 2024, 277: 116363. [35] Cui Y, Wang Q, Shi Y, et al. mtROS-mediated mitophagy is involved in aflatoxin-B1 induced liver injury in ducks[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2024, 283: 109942. [36] Schollmeier A, Basic M, Glitscher M, et al. The impact of HBx protein on mitochondrial dynamics and associated signaling pathways strongly depends on the hepatitis B virus genotype[J]. J Virol, 2024, 98(5): e0042424. [37] Gao A, Jiang J, Xie F, et al. Bnip3 in mitophagy: novel insights and potential therapeutic target for diseases of secondary mitochondrial dysfunction[J]. Clin Chim Acta, 2020, 506: 72-83. [38] 杨州帆. 卡马西平对APRI和FIB-4指数影响的临床及分子机制研究[D]. 百色: 右江民族医学院, 2020. [39] Bi Y, Liu S, Qin X, et al. FUNDC1 interacts with GPx4 to govern hepatic ferroptosis and fibrotic injury through a mitophagy-dependent manner[J]. J Adv Res, 2024, 55: 45-60. [40] Tian Y, Jellinek M J, Mehta K, et al. Membrane phospholipid remodeling modulates nonalcoholic steatohepatitis progression by regulating mitochondrial homeostasis[J]. Hepatology, 2024, 79(4): 882-897. [41] 张月, 白德高, 霍冉, 等. 基于线粒体自噬研究补肝散对衰老大鼠肝脏损伤的影响[J]. 中华中医药杂志, 2023, 38(3): 1039-1045. [42] 张文富, 吴姗姗, 戴铭, 等. 基于miR-135a/FOXO1/PINK1通路探讨柔肝化纤颗粒调控线粒体自噬抑制肝星状细胞活化的机制[J]. 中华中医药学刊, 2024, 42(4): 30-34. [43] Naveed M, Hejazi V, Abbas M, et al. Chlorogenic acid (CGA): a pharmacological review and call for further research[J]. Biomed Pharmacother, 2018, 97: 67-74. [44] 温佳楠, 尹钰锋, 李铭, 等. 绿原酸可减轻高水平FAs诱导犊牛肝细胞线粒体功能障碍[J]. 中国兽医学报, 2024, 44(5): 1014-1018. [45] 王潇, 何蓓晖, 姚侃男, 等. 胡柚皮黄酮对棕榈酸诱导的脂肪变性肝细胞中线粒体膜电位以及自噬相关蛋白表达的影响[J]. 浙江中西医结合杂志, 2024, 34(1): 28-33. [46] He Q, Yin Z, Chen Y, et al. Cyanidin-3-O-glucoside alleviates ethanol-induced liver injury by promoting mitophagy in a Gao-binge mouse model of alcohol-associated liver disease[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(6): 167259. [47] Wu J, Gong L, Li Y, et al. Tao-Hong-Si-Wu-Tang improves thioacetamide-induced liver fibrosis by reversing ACSL4-mediated lipid accumulation and promoting mitophagy[J]. J Ethnopharmacol, 2024, 333: 118456. [48] 罗军涛, 钱胜南, 吴凯悦, 等. 探讨青蒿琥酯和扶正化瘀方治疗血吸虫病肝纤维化对线粒体的影响[J]. 中华肝脏病杂志, 2022, 30(1): 45-51. [49] 周志佳. 基于线粒体自噬PINK1/Parkin信号通路探讨皂术茵陈方治疗大鼠非酒精性脂肪性肝炎的作用机制[D]. 厦门: 厦门大学, 2021. [50] Li J, Huang Q, Ma W, et al. Hepatoprotective efficacy and interventional mechanism of JianPi LiShi YangGan formula in acute-on-chronic liver failure[J]. J Ethnopharmacol, 2024, 318(Pt A): 116880. [51] 安祯祥, 何远利, 王芳, 等. 扶脾柔肝方及拆方对肝纤维化大鼠肝组织线粒体自噬相关蛋白表达的影响[J]. 中华中医药学刊, 2022, 40(2): 5-11,273. |