[1] Azzalin A, Nato G, Parmigiani E, et al. Inhibitors of GLUT/SLC2A Enhance the Action of BCNU and Temozolomide against High-Grade Gliomas[J]. Neoplasia, 2017, 19(4): 364-373. [2] Guo Z, Zhang Y, Wang H, et al. Hypoxia-induced downregulation of PGK1 crotonylation promotes tumorigenesis by coordinating glycolysis and the TCA cycle[J]. Nat Commun, 2024, 15(1): 6915. [3] Navale A M, Paranjape A N. Glucose transporters: physiological and pathological roles[J]. Biophys Rev, 2016, 8(1): 5-9. [4] Shi C, Zhang Y, Chen Q, et al. The acetylation of MDH1 and IDH1 is associated with energy metabolism in acute liver failure[J]. iScience, 2024, 27(5): 109678. [5] Russmann S, Kullak-Ublick G A, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity[J]. Curr Med Chem, 2009, 16(23): 3041-3053. [6] Wilson C, Lee M D, Buckley C, et al. Mitochondrial ATP Production is Required for Endothelial Cell Control of Vascular Tone[J]. Function (Oxf), 2023, 4(2): zqac063. [7] Pavlova N N, Thompson C B. The Emerging Hallmarks of Cancer Metabolism[J]. Cell Metab, 2016, 23(1): 27-47. [8] Peng M, Yin N, Chhangawala S, et al. Aerobic glycolysis promotes T helper 1 cell differentiation through an epigenetic mechanism[J]. Science, 2016, 354(6311): 481-484. [9] Song C W, Lee C K, Rhee J G, et al. Comparison of the cytotoxicity of 5-thio-D-glucose and misonidazole on hypoxic cells in vitro[J]. Int J Radiat Oncol Biol Phys, 1982, 8(3-4): 749-752. [10] Güzel S, Yalçin A, Gürpinar Y, et al. Expression of Pfkfb isoenzymes during in vitro differentiation of mouse embryonic stem cells into insulin-producing cells[J]. Turk J Med Sci, 2023, 53(6): 1565-1573. [11] Dasgupta S, Rajapakshe K, Zhu B, et al. Metabolic enzyme PFKFB4 activates transcriptional coactivator SRC-3 to drive breast cancer[J]. Nature, 2018, 556(7700): 249-254. [12] Li X Y, Yin X, Lu J J, et al. Ubiquitinome Analysis Uncovers Alterations in Synaptic Proteins and Glucose Metabolism Enzymes in the Hippocampi of Adolescent Mice Following Cold Exposure[J]. Cells, 2024, 13(7):570. [13] Ros S, Santos C R, Moco S, et al. Functional metabolic screen identifies 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 as an important regulator of prostate cancer cell survival[J]. Cancer Discov, 2012, 2(4): 328-343. [14] Corcoran S E, O’Neill L A. HIF1α and metabolic reprogramming in inflammation[J]. J Clin Invest, 2016, 126(10): 3699-3707. [15] Palsson-McDermott E M, Curtis A M, Goel G, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages[J]. Cell Metab, 2015, 21(1): 65-80. [16] Vaupel P, Schmidberger H, Mayer A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression[J]. Int J Radiat Biol, 2019, 95(7): 912-919. [17] Kubicka A, Matczak K, ?abieniec-Wata?a M. More Than Meets the Eye Regarding Cancer Metabolism[J]. Int J Mol Sci, 2021, 22(17):9507. [18] Bayley J P, Devilee P. The Warburg effect in 2012[J]. Curr Opin Oncol, 2012, 24(1): 62-67. [19] Zhu S, Guo Y, Zhang X, et al. Pyruvate kinase M2 (PKM2) in cancer and cancer therapeutics[J]. Cancer Lett, 2021, 503: 240-248. [20] Zhou L, He R, Fang P, et al. Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition[J]. Nat Commun, 2021, 12(1): 98. [21] Chan T S, Cassim S, Raymond V A, et al. Upregulation of Krebs cycle and anaerobic glycolysis activity early after onset of liver ischemia[J]. PLoS One, 2018, 13(6). [22] Krajnc E, Visentin M, Gai Z, et al. Untargeted Metabolomics Reveals Anaerobic Glycolysis as a Novel Target of the Hepatotoxic Antidepressant Nefazodone[J]. Journal of Pharmacology and Experimental Therapeutics, 2020, 375(2): 239-246. [23] Mejias M, Gallego J, Naranjo-Suarez S, et al. CPEB4 Increases Expression of PFKFB3 to Induce Glycolysis and Activate Mouse and Human Hepatic Stellate Cells, Promoting Liver Fibrosis[J]. Gastroenterology, 2020, 159(1): 273-288. [24] Rao J, Wang H, Ni M, et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2[J]. Gut, 2022, 71(12): 2539-2550. [25] Wang F, Chen L, Kong D, et al. Canonical Wnt signaling promotes HSC glycolysis and liver fibrosis through an LDH-A/HIF-1α transcriptional complex[J]. Hepatology, 2024, 79(3): 606-623. [26] Xia H, Chen J, Gao H, et al. Hypoxia-induced modulation of glucose transporter expression impacts (18)F-fluorodeoxyglucose PET-CT imaging in hepatocellular carcinoma[J]. Eur J Nucl Med Mol Imaging, 2020, 47(4): 787-797. [27] Sharma B K, Kolhe R, Black S M, et al. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells[J]. Faseb j, 2016, 30(1): 262-275. [28] Tong X, Zhao F, Thompson C B. The molecular determinants of de novo nucleotide biosynthesis in cancer cells[J]. Curr Opin Genet Dev, 2009, 19(1): 32-37. [29] Zhang L, Li Y, Dai Y, et al. Glycolysis-related gene expression profiling serves as a novel prognosis risk predictor for human hepatocellular carcinoma[J]. Sci Rep, 2021, 11(1): 18875. [30] Gong Y, Zou B, Peng S, et al. Nuclear GAPDH is vital for hypoxia-induced hepatic stellate cell apoptosis and is indicative of aggressive hepatocellular carcinoma behavior[J]. Cancer Manag Res, 2019, 11: 4947-4956. [31] Chen Z, Zuo X, Zhang Y, et al. MiR-3662 suppresses hepatocellular carcinoma growth through inhibition of HIF-1α-mediated Warburg effect[J]. Cell Death Dis, 2018, 9(5): 549. [32] Woods M W, Vlahakis G. Anaerobic glycolysis in spontaneous and transplanted liver tumors of mice[J]. J Natl Cancer Inst, 1973, 50(6): 1497-1511. [33] Liao W, Liu J, Zhang D, et al. Butein Inhibited In Vitro Hexokinase-2-Mediated Tumor Glycolysis in Hepatocellular Carcinoma by Blocking Epidermal Growth Factor Receptor (EGFR)[J]. Med Sci Monit, 2018, 24: 3283-3292. [34] Zhao Y, Li M, Yao X, et al. HCAR1/MCT1 Regulates Tumor Ferroptosis through the Lactate-Mediated AMPK-SCD1 Activity and Its Therapeutic Implications[J]. Cell Rep, 2020, 33(10): 108487. [35] Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580. |