[1] Younossi Z M, Koenig A B, Abdelatif D, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes [J]. Hepatology, 2016,64(1):73-84. [2] Ran S, Zhang J, Tian F, et al. Association of metabolic signatures of air pollution with MASLD: observational and mendelian randomization study [J]. J Hepatol, 2025,82(4):560-570. [3] Portincasa P, Khalil M, Mahdi L, et al. Metabolic dysfunction-associated steatotic liver disease: from pathogenesis to current therapeutic options [J]. Int J Mol Sci,2024,25(11):5640. [4] Lefebvre P, Chinetti G, Fruchart J C,et al. Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis [J]. J Clin Invest,2006,116(3):571-580. [5] Carli F, Della Pepa G, Sabatini S, et al. Lipid metabolism in MASLD and MASH: from mechanism to the clinic [J]. JHEP Rep,2024,6(12):101185. [6] Tacke F, Puengel T, Loomba R, et al. An integrated view of anti-inflammatory and antifibrotic targets for the treatment of NASH [J]. J Hepatol,2023,79(2):552-566. [7] Esler W P, Cohen D E. Pharmacologic inhibition of lipogenesis for the treatment of NAFLD [J]. J Hepatol,2024,80(2):362-377. [8] Zhao L, Zhang C, Luo X, et al. CD36 palmitoylation disrupts free fatty acid metabolism and promotes tissue inflammation in non-alcoholic steatohepatitis[J]. J Hepatol,2018,69(3):705-717. [9] Pohl J, Ring A, Hermann T,et al. Role of FATP in parenchymal cell fatty acid uptake[J]. Biochim Biophys Acta,2004,1686(1-2):1-6. [10] Fromenty B, Roden M. Mitochondrial alterations in fatty liver diseases[J]. J Hepatol, 2023,78(2):415-429. [11] Francque S, Verrijken A, Caron S, et al. PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis[J]. J Hepatol, 2015,63(1):164-173. [12] Gastaldelli A, Casolaro A, Ciociaro D, et al. Decreased whole body lipolysis as a mechanism of the lipid-lowering effect of pioglitazone in type 2 diabetic patients[J]. Am J Physiol Endocrinol Metab,2009,297(1):E225-E230. [13] Ricote M, Glass C K. PPARs and molecular mechanisms of transrepression[J]. Biochim Biophys Acta,2007,1771(8):926-935. [14] Lanthier N, Molendi-Coste O, Horsmans Y,et al. Kupffer cell activation is a causal factor for hepatic insulin resistance[J]. Am J Physiol Gastrointest Liver Physiol,2010,298(1):G107-G116. [15] Parlati L, Régnier M, Guillou H,et al. New targets for NAFLD[J]. JHEP Rep,2021,3(6):100346. [16] Lefebvre P, Lalloyer F, Baugé E, et al. Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin[J]. JCI Insight, 2017,2(13):e92264. [17] Sabatini S, Gastaldelli A. Metabolic effects and mechanism of action of the pan-PPAR agonist lanifibranor[J]. J Hepatol,2025,82(6):950-952. [18] Francque S M, Bedossa P, Ratziu V, et al. A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH[J]. N Engl J Med, 2021,385: 1547-1558. [19] Barb D, Kalavalapalli S, Leiva E G, et al. Pan-PPAR agonist lanifibranor improves insulin resistance and hepatic steatosis in patients with T2D and MASLD[J]. J Hepatol, 2025,82:979-991. [20] Balas B, Belfort R, Harrison S A, et al. Pioglitazone treatment increases whole body fat but not total body water in patients with non-alcoholic steatohepatitis[J]. J Hepatol, 2007,47:565-570. |