[1] Mǎrginean C O, Meli, L E, Sǎsǎran M O. Metabolic associated fatty liver disease in children-from atomistic to holistic [J]. Biomedicines, 2021, 9(12):1866. [2] Le Garf S, Nègre V, Anty R, et al. Metabolic fatty liver disease in children: a growing public health problem [J]. Biomedicines, 2021, 9(12):1915. [3] Fan J G, Li X Y. NAFLD renaming to MAFLD, MASLD: background, similarities, differences, and countermeasures [J].Chin J Hepatol, 2023, 31(8): 789-792. [4] Viswanath A, Fouda S, Fernandez C J, et al. Metabolic-associated fatty liver disease and sarcopenia: a double whammy [J]. World J Hepatol, 2024, 16(2): 152-163. [5] Kanwal F, Shubrook J H, Adams L A, et al. Clinical care pathway for the risk stratification and management of patients with nonalcoholic fatty liver disease [J]. Gastroenterology, 2021, 161(5): 1657-1669. [6] Hwang J Y, Yoon H M, Kim J R, et al. Diagnostic performance of transient elastography for liver fibrosis in children: a systematic review and meta-analysis [J]. Ajr Am J Roentgenol, 2018, 211(5): 257-266. [7] Caballería L, Pera G, Arteaga I, et al. High prevalence of liver fibrosis among European adults with unknown liver disease: a population-based study [J]. Clin Gastroenterol Hepatol, 2018, 16(7): 1138-1145. [8] Rehm J L, Wolfgram P M, Hernando D, et al. Proton density fat-fraction is an accurate biomarker of hepatic steatosis in adolescent girls and young women [J]. Eur Radiol, 2015, 25(10): 2921-2930. [9] Petroff D, Blank V, Newsome P N, et al. Assessment of hepatic steatosis by controlled attenuation parameter using the M and XL probes: an individual patient data meta-analysis [J]. Lancet Gastroenterol Hepatol, 2021, 6(3): 185-198. [10] Chen B R, Pan C Q. Non-invasive assessment of fibrosis and steatosis in pediatric non-alcoholic fatty liver disease [J]. Clin Res Hepatol Gastroenterol, 2022, 46(1): 101755. [11] Jang J K, Choi S H, Lee J S, et al. Accuracy of the ultrasound attenuation coefficient for the evaluation of hepatic steatosis: a systematic review and meta-analysis of prospective studies [J]. Ultrasonography, 2022, 41(1): 83-92. [12] Starekova J, Hernando D, Pickhardt P J, et al. Quantification of liver fat content with CT and MRI: state of the art [J]. Radiology, 2021, 301(2): 250-262. [13] Kalarakis G, Perisinakis K, Akoumianakis E, et al. CT liver perfusion in patients with hepatocellular carcinoma: can we modify acquisition protocol to reduce patient exposure? [J]. Eur Radiol, 2021, 31(3): 1410-1419. [14] Roberts N T, Hernando D, Holmes J H, et al. Noise properties of proton density fat fraction estimated using chemical shift-encoded MRI [J]. Magn Reson Med, 2018, 80(2): 685-695. [15] Trout A T, Anupindi S A, Gee M S, et al. Normal liver stiffness measured with MR elastography in children [J]. Radiology, 2020, 297(3): 663-669. [16] Sawh M C, Newton K P, Goyal N P, et al. Normal range for MR elastography measured liver stiffness in children without liver disease [J]. J Magn Reson Imaging, 2020, 51(3): 919-927. [17] Joo J Y, Yoo I H, Yang H R. Serologic biomarkers for hepatic fibrosis in obese children with nonalcoholic steatohepatitis [J]. Pediatr Gastroenterol Hepatol Nutr, 2024, 27(4): 236-245. [18] Liao Y, Wang L, Liu F, et al. Emerging trends and hotspots in metabolic dysfunction-associated fatty liver disease (MAFLD) research from 2012 to 2021: a bibliometric analysis [J]. Front Endocrinol (Lausanne), 2023, 14: 1078149. [19] Ruiz De Morales J M G, Puig L, Daudén E, et al. Critical role of interleukin (IL)-17 in inflammatory and immune disorders: an updated review of the evidence focusing in controversies [J]. Autoimmun Rev, 2020, 19(1): 102429. [20] Duan Y, Luo J, Pan X, et al. Association between inflammatory markers and non-alcoholic fatty liver disease in obese children [J]. Front Public Health, 2022, 10: 991393. [21] Riccio S, Melone R, Vitulano C, et al. Advances in pediatric non-alcoholic fatty liver disease: from genetics to lipidomics [J]. World J Clin Pediatr, 2022, 11(3): 221-238. [22] Shabalala S C, Dludla P V, Mabasa L, et al. The effect of adiponectin in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and the potential role of polyphenols in the modulation of adiponectin signaling [J]. Biomed Pharmacother, 2020, 131: 110785. [23] Mohamed A A, Sabry S, Abdallah A M, et al. Circulating adipokines in children with nonalcoholic fatty liver disease: possible noninvasive diagnostic markers [J]. Ann Gastroenterol, 2017, 30(4): 457-463. [24] Jiménez-cortegana C, García-galey A, Tami M, et al. Role of leptin in non-alcoholic fatty liver disease [J]. Biomedicines, 2021, 9(7):762. [25] Boyraz M, Cekmez F, Karaoglu A, et al. Serum adiponectin, leptin, resistin and RBP4 levels in obese and metabolic syndrome children with nonalcoholic fatty liver disease [J]. Biomark Med, 2013, 7(5): 737-745. [26] Nobili V, Alisi A, Valenti L, et al. NAFLD in children: new genes, new diagnostic modalities and new drugs [J]. Nat Rev Gastroenterol Hepatol, 2019, 16(9): 517-530. [27] Bǎlǎnescu A, Stan I, Codreanu I, et al. Circulating hsp90 isoform levels in overweight and obese children and the relation to nonalcoholic fatty liver disease: results from a cross-sectional study [J]. Dis Markers, 2019, (2019): 9560247. [28] Qin Z W, Ren Q N, Zhang H X, et al. Development and validation of a novel non-invasive test for diagnosing nonalcoholic fatty liver disease in Chinese children [J]. World J Pediatr, 2024, 20(4): 413-421. [29] Xing Y, Zhang P, Li X, et al. New predictive models and indices for screening MAFLD in school-aged overweight/obese children [J]. Eur J Pediatr, 2023, 182(11): 5025-5036. [30] Lischka J, Schanzer A, Hojreh A, et al. A branched-chain amino acid-based metabolic score can predict liver fat in children and adolescents with severe obesity [J]. Pediatr Obes, 2021, 16(4): e12739. [31] Eslam M, Alkhouri N, Vajro P, et al. Defining paediatric metabolic (dysfunction)-associated fatty liver disease: an international expert consensus statement [J]. Lancet Gastroenterol Hepatol, 2021, 6(10): 864-873. [32] Sakurai Y, Kubota N, Yamauchi T, et al. Role of insulin resistance in MAFLD [J]. Int J Mol Sci, 2021, 22(8):4156-4156. [33] Trochimczyk K, Flisiak-jackiewicz M, Bobrus-chociej A, et al. Biochemical and anthropometric indices of insulin resistance in obese and overweight children with metabolic dysfunction-associated fatty liver disease [J]. Med Sci Monit, 2024, 30: e943375. [34] Lazo-de-la-vega-monroy M L, Preciado-puga M D, Ruiz-noa Y, et al. Correlation of the pediatric metabolic index with NAFLD or MAFLD diagnosis, and serum adipokine levels in children [J]. Clin Res Hepatol Gastroenterol, 2023, 47(6): 102137. [35] Abdelhameed F, Kite C, Lagojda L, et al. Non-invasive scores and serum biomarkers for fatty liver in the era of metabolic dysfunction-associated steatotic liver disease (MASLD): a comprehensive review from NAFLD to MAFLD and MASLD [J]. Curr Obes Rep, 2024, 13(3): 510-531. [36] Becker R. Non-invasive cancer detection using volatile biomarkers: is urine superior to breath? [J]. Med Hypotheses, 2020, 143: 110060. [37] Alkhouri N, Cikach F, Eng K, et al. Analysis of breath volatile organic compounds as a noninvasive tool to diagnose nonalcoholic fatty liver disease in children [J]. Eur J Gastroenterol Hepatol, 2014, 26(1): 82-87. |