摘要: 急性肝衰竭(ALF)是一种高病死率的临床危重病,其特征是无基础肝病患者的肝功能进行性恶化,常伴有黄疸、凝血功能障碍和肝性脑病。ALF的发病机制很复杂,尚未完全阐明。嗜肝病毒、药物毒物、自身免疫性疾病、缺血等不同病因均可引起急性肝损伤,可迅速进展为ALF甚至死亡,目前尚无特效治疗药物和方法。因此,深入探究ALF的发病机制并寻找有效的治疗方法显得尤为重要。本文综述了ALF相关的固有免疫机制,以及固有免疫细胞在ALF发生和发展过程中的作用。
王小燕, 张雨夜, 田李均, 韩旭东. 固有免疫细胞在急性肝衰竭发生和发展中的作用及研究进展[J]. 肝脏, 2024, 29(3): 358-362.
[1] 秦勇, 黄圣杰, 王金龙, 等. 急性肝衰竭诊治进展[J]. 新医学, 2020, 51(10): 736-740. [2] Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity[J]. Cell Biosci, 2022, 12(1): 187. [3] Chen C, Zhang S Y, Chen L. Review of clinical characteristics, immune responses and regulatory mechanisms of hepatitis E-associated liver failure[J]. World J Clin Cases, 2022, 10(19): 6341-6348. [4] Guillot A, Tacke F. Liver macrophages: old dogmas and new insights[J]. Hepatol Commun, 2019, 3(6): 730-743. [5] Yang T, Wang H, Wang X, et al. The dual role of innate immune response in acetaminophen-induced liver injury[J]. Biology (Basel), 2022, 11(7): 1057. [6] Groeneveld D, Cline-Fedewa H, Baker K S, et al. Von Willebrand factor delays liver repair after acetaminophen-induced acute liver injury in mice[J]. J Hepatol, 2020, 72(1): 146-155. [7] Elchaninov A V, Fatkhudinov T K, Vishnyakova P A, et al. Phenotypical and functional polymorphism of liver resident macrophages[J]. Cells, 2019, 8(9): 1032. [8] Wang T, Lu Z, Qu X H, et al. Chrysophanol-8-O-glucoside protects mice against acute liver injury by inhibiting autophagy in hepatic stellate cells and inflammatory response in liver-resident macrophages[J]. Front Pharmacol, 2022, 13:951521. [9] Muniandy K, Gothai S, Badran K M H, et al. Suppression of proinflammatory cytokines and mediators in LPS-induced RAW 264.7 macrophages by stem extract of alternanthera sessilis via the inhibition of the NF-kappaB pathway[J]. J Immunol Res, 2018, 2018:3430684. [10] Triantafyllou E, Gudd C L, Mawhin M A, et al. PD-1 blockade improves Kupffer cell bacterial clearance in acute liver injury[J]. J Clin Invest, 2021, 131(4): e140196. [11] Zhao J, Kim J W, Zhou Z, et al. Macrophage-inducible C-type lectin signaling exacerbates acetaminophen-induced liver injury by promoting kupffer cell activation in mice[J]. Mol Pharmacol, 2021, 99(2): 92-103. [12] Li Y, Du Y, Xu Z, et al. Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo[J]. J Lipid Res, 2022, 63(5): 100207. [13] Possamai L A, Thursz M R, Wendon J A, et al. Modulation of monocyte/macrophage function: a therapeutic strategy in the treatment of acute liver failure[J]. Journal of Hepatology, 2014, 61(2): 439-445. [14] Xiao F, Wang H W, Hu J J, et al. Fibrinogen-like protein 2 deficiency inhibits virus-induced fulminant hepatitis through abrogating inflammatory macrophage activation[J]. World J Gastroenterol, 2022, 28(4): 479-496. [15] Wang Y Q, Lan Y Y, Guo Y C, et al. Down-regulation of microRNA-138 improves immunologic function via negatively targeting p53 by regulating liver macrophage in mice with acute liver failure[J]. Biosci Rep, 2019, 39(7): BSR20190763. [16] Chen Q, Zhang Q, Cao P, et al. NOD2-mediated HDAC6/NF-kappab signalling pathway regulates ferroptosis induced by extracellular histone H3 in acute liver failure[J]. J Cell Mol Med, 2022, 26(21): 5528-5538. [17] Wang G, Jin S, Huang W, et al. LPS-induced macrophage HMGB1-loaded extracellular vesicles trigger hepatocyte pyroptosis by activating the NLRP3 inflammasome[J]. Cell Death Discov, 2021, 7(1): 337. [18] Manakkat Vijay G K, Hu C, Peng J, et al. Ammonia-induced brain edema requires macrophage and T cell expression of toll-like receptor 9[J]. Cell Mol Gastroenterol Hepatol, 2019, 8(4): 609-623. [19] Wen Y, Lambrecht J, Ju C, et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities[J]. Cell Mol Immunol, 2021, 18(1): 45-56. [20] Trovato F M, Zia R, Artru F, et al. Lysophosphatidylcholines modulate immunoregulatory checkpoints in peripheral monocytes and are associated with mortality in people with acute liver failure[J]. J Hepatol, 2023, 78(3): 558-573. [21] Ramavath N N, Gadipudi L L, Provera A, et al. Inducible T-cell costimulator mediates lymphocyte/macrophage interactions during liver repair[J]. Front Immunol, 2021, 12:786680. [22] Kubes P, Jenne C. Immune responses in the liver[J]. Annu Rev Immunol, 2018, 36:247-277. [23] Koda Y, Nakamoto N, Chu P S, et al. Plasmacytoid dendritic cells protect against immune-mediated acute liver injury via IL-35[J]. J Clin Invest, 2019, 129(8): 3201-3213. [24] Koda Y, Nakamoto N, Chu P S, et al. CCR9 axis inhibition enhances hepatic migration of plasmacytoid DCs and protects against liver injury[J]. JCI Insight, 2022, 7(17):e159910. [25] Chen Y, Hou C, Yang N, et al. Regulatory effect of JAK2/STAT3 on the immune function of endotoxin-tolerant dendritic cells and its involvement in acute liver failure[J]. J Clin Transl Hepatol, 2022, 10(5): 879-890. [26] Wang J, Cao X, Zhao J, et al. Critical roles of conventional dendritic cells in promoting T cell-dependent hepatitis through regulating natural killer T cells[J]. Clin Exp Immunol, 2017, 188(1): 127-137. [27] Liu K, Wang F S, Xu R. Neutrophils in liver diseases: pathogenesis and therapeutic targets[J]. Cell Mol Immunol, 2021, 18(1): 38-44. [28] Xu R, Huang H, Zhang Z, et al. The role of neutrophils in the development of liver diseases[J]. Cell Mol Immunol, 2014, 11(3): 224-231. [29] 石春霞, 陈倩, 王瑶, 等. 急性肝衰竭小鼠血清与组织中PTX3、HBP、PCT及IL-6、IL-1β、TNF-α的变化及诊断价值[J]. 医学研究杂志, 2020, 49(1): 28-33. [30] Li X, Gao Q, Wu W, et al. FGL2-MCOLN3-autophagy axis-triggered neutrophil extracellular traps exacerbate liver injury in fulminant viral hepatitis[J]. Cell Mol Gastroenterol Hepatol, 2022, 14(5): 1077-1101. [31] Liu J, Jiang M, Jin Q, et al. Modulation of HMGB1 release in APAP-induced liver injury: a possible strategy of chikusetsusaponin V targeting NETs formation[J]. Front Pharmacol, 2021, 12:723881. [32] Ye D, Yao J, Du W, et al. Neutrophil extracellular traps mediate acute liver failure in regulation of miR-223/neutrophil elastase signaling in mice[J]. Cell Mol Gastroenterol Hepatol, 2022, 14(3): 587-607. [33] Alvarenga D M, Mattos M S, Lopes M E, et al. Paradoxical role of matrix metalloproteinases in liver injury and regeneration after sterile acute hepatic failure[J]. Cells, 2018, 7(12): 247. [34] Zhai T T, Zhang J J, Zhang J, et al. Cathelicidin promotes liver repair after acetaminophen-induced liver injury in mice[J]. JHEP Reports, 2023, 5(4): 100687. [35] Graubardt N, Vugman M, MouhadeB O, et al. Ly6C(hi) monocytes and their macrophage descendants regulate neutrophil function and clearance in acetaminophen-induced liver injury[J]. Front Immunol, 2017, 8:626. [36] Srungaram P, Rule J A, Yuan H J, et al. Plasma osteopontin in acute liver failure[J]. Cytokine, 2015, 73(2): 270-276. [37] He C Y, Liang B B, Fan X Y, et al. The dual role of osteopontin in acetaminophen hepatotoxicity[J]. Acta Pharmacol Sin, 2012, 33(8): 1004-1012. [38] Yang W, Tao Y, Wu Y, et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair[J]. Nat Commun, 2019, 10(1): 1076. [39] Kolodziejczyk A A, Federici S, Zmora N, et al. Acute liver failure is regulated by MYC-and microbiome-dependent programs[J]. Nat Med, 2020, 26(12): 1899-1911. [40] Weber S, Benesic A, Neumann J, et al. Liver injury associated with metamizole exposure: features of an underestimated adverse event[J]. Drug Saf, 2021, 44(6): 669-680. [41] Xu L, Yang Y, Jiang J, et al. Eosinophils protect against acetaminophen-induced liver injury through cyclooxygenase-mediated IL-4/IL-13 production[J]. Hepatology, 2023, 77(2): 456-465. [42] Xu L, Yang Y, Wen Y, et al. Hepatic recruitment of eosinophils and their protective function during acute liver injury[J]. J Hepatol, 2022, 77(2): 344-352. [43] Zhang X, Wang P, Chen T, et al. Kctd9 deficiency impairs natural killer cell development and effector function[J]. Front Immunol, 2019, 10:744. [44] Fasbender F, Obholzer M, Metzler S, et al. Enhanced activation of human NK cells by drug-exposed hepatocytes[J]. Arch Toxicol, 2020, 94(2): 439-448. [45] Agrawal T, Maiwall R, Rajan V, et al. Higher circulating natural killer cells and lower lactate levels at admission predict spontaneous survival in non-acetaminophen induced acute liver failure[J]. Clin Immunol, 2021, 231:108829. [46] Martin-Murphy B V, Kominsky D J, Orlicky D J, et al. Increased susceptibility of natural killer T-cell-deficient mice to acetaminophen-induced liver injury[J]. Hepatology, 2013, 57(4): 1575-1584. [47] ZHao N, Hao J, Ni Y, et al. Vγ4 γδ T cell-derived IL-17A negatively regulates NKT cell function in Con A-induced fulminant hepatitis[J]. J Immunol, 2011, 187(10): 5007-5014. [48] Wu D, Yan W M, Wang H W, et al. Gammadelta T cells contribute to the outcome of murine fulminant viral hepatitis via effector cytokines TNF-alpha and IFN-gamma[J]. Curr Med Sci, 2018, 38(4): 648-655. [49] Rha M S, Han J W, Kim J H, et al. Human liver CD8(+) MAIT cells exert TCR/MR1-independent innate-like cytotoxicity in response to IL-15[J]. J Hepatol, 2020, 73(3): 640-650. [50] Cheng T C, Xue H, Li H, et al. MAIT cells predict long-term prognosis in liver failure patients[J]. Medicine (Baltimore), 2022, 101(34): e29809. |
[1] | 王开利, 刘鸿凌. 急性肝衰竭相关研究新进展[J]. 肝脏, 2024, 29(3): 258-259. |
[2] | 沈梓萱, 李海. 慢加急性肝衰竭——新技术促进慢加急性肝衰竭早诊早治主动管理体系建立[J]. 肝脏, 2024, 29(1): 26-28. |
[3] | 刘哲睿, 翟兴冉, 邹正升. 药物性急性肝功能衰竭近况[J]. 肝脏, 2024, 29(1): 30-33. |
[4] | 齐婧姝, 平大冰, 孙鑫, 胡旭东, 彭渊, 刘成海. 中性粒细胞在肝纤维化中的作用[J]. 肝脏, 2023, 28(9): 1127-1130. |
[5] | 李俊缨, 柳晓峰, 程笑, 陈金军. 成功救治米酵菌酸中毒致肝衰竭1例[J]. 肝脏, 2023, 28(8): 1005-1006. |
[6] | 陈丽霞, 许镇额, 刘海钰, 林建辉. 血清前白蛋白-总胆红素评分对血浆置换经治乙型肝炎病毒相关慢加急性肝衰竭预后的评估价值[J]. 肝脏, 2023, 28(7): 794-798. |
[7] | 顾竞娴, 张英平, 徐晓英. 血清NLR、sVCAM-1和IGFBP-3水平与妊娠期肝内胆汁淤积症病情程度和疾病预后的相关性[J]. 肝脏, 2023, 28(7): 840-844. |
[8] | 张雪, 宋洁, 邵雪. COSSH ACLF评分联合血清NLR、AFP对人工肝治疗慢加急性肝衰竭短期预后的预测价值[J]. 肝脏, 2023, 28(6): 702-706. |
[9] | 陈铿, 李平红, 李艳玲, 杨可立, 廖宝林, 刘惠媛. 乙型肝炎病毒相关慢加急性肝衰竭合并肝性脑病患者临床特点及预后影响因素分析[J]. 肝脏, 2023, 28(5): 568-571. |
[10] | 文苑, 祝娟娟. 系统性炎症在慢加急性肝衰竭合并急性肾损伤发生发展中的作用[J]. 肝脏, 2023, 28(5): 618-620. |
[11] | 张蒲阳, 牛庆慧, 许传屾, 苟卫, 李金金, 蔡金贞. 慢加急性肝衰竭预后研究及新评分的建立分析[J]. 肝脏, 2023, 28(4): 416-422. |
[12] | 李芃芃, 董其刚, 许军. 慢加急性肝衰竭患者急性肾损伤的特点及其对预后的影响[J]. 肝脏, 2023, 28(3): 330-333. |
[13] | 许海玲, 章颖, 俞冲, 王忠成, 陈琳. 还原型谷胱甘肽联合PE+DPMAS治疗慢加急性肝衰竭的效果及预后评分模型的建立[J]. 肝脏, 2023, 28(3): 334-339. |
[14] | 尹僖, 叶玉伟, 王军, 张宏玲, 郑亚, 周永宁. 外周血炎症指标对慢加急性肝衰竭预后的研究[J]. 肝脏, 2023, 28(3): 377-380. |
[15] | 金建国, 华晴. 76例儿童急性肝衰竭病因及临床转归分析[J]. 肝脏, 2023, 28(2): 162-164. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||