摘要: 胃食管静脉曲张是肝硬化最常见的并发症之一,其可能进展为胃食管静脉曲张出血,是肝硬化患者死亡的主要原因。目前,门静脉高压被认为与胃食管静脉曲张出血的发生密切相关。肝静脉压力梯度是临床上评估门静脉高压的金标准,但因其检测为有创性,至今无法广泛应用于临床。因此,寻找一种无创的方法来准确评估门静脉高压严重程度,进而预测食管胃底静脉曲张再出血的风险至关重要。本文就目前肝硬化门静脉高压的无创诊断方法进行综述。
饶晨怡, 李锋. 无创评估肝硬化门静脉高压严重程度的研究进展[J]. 肝脏, 2024, 29(7): 877-880.
[1] Jakab S S, Garcia-Tsao G. Evaluation and management of esophageal and gastric varices in patients with cirrhosis[J]. Clin Liver Dis, 2020, 24(3): 335-350. [2] Sharara A I, Rockey D C. Gastroesophageal variceal hemorrhage[J]. N Engl J Med, 2001, 345(9): 669-681. [3] Jakab S S, Garcia-Tsao G. Screening and surveillance of varices in patients with cirrhosis[J]. Clin Gastroenterol Hepatol, 2019, 17(1): 26-29. [4] Garcia-Tsao G, Bosch J. Management of varices and variceal hemorrhage in cirrhosis[J]. N Engl J Med, 2010, 362(9): 823-832. [5] Bosch J, Abraldes J G, Berzigotti A, et al. The clinical use of HVPG measurements in chronic liver disease[J]. Nat Rev Gastroenterol Hepatol, 2009, 6(10): 573-582. [6] de Franchis R, Bosch J, Garcia-Tsao G, et al. Baveno Ⅶ - Renewing consensus in portal hypertension[J]. J Hepatol, 2022, 76(4): 959-974. [7] Garcia-Tsao G, Abraldes J G, Berzigotti A, et al. Portal hypertensive bleeding in cirrhosis: Risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the Study of Liver Diseases[J]. Hepatology, 2017, 65(1): 310-335. [8] La Mura V, Garcia-Guix M, Berzigotti A, et al. A prognostic strategy based on stage of cirrhosis and HVPG to improve risk stratification after variceal bleeding[J]. Hepatology, 2020, 72(4): 1353-1365. [9] Berzigotti A, Rossi V, Tiani C, et al. Prognostic value of a single HVPG measurement and Doppler-ultrasound evaluation in patients with cirrhosis and portal hypertension[J]. J Gastroenterol, 2011, 46(5): 687-695. [10] A J, A B, G K, et al. Clinical decompensation and outcomes in patients with compensated cirrhosis and a hepatic venous pressure gradient ≥20 mmHg[J]. Am J Gastroenterol, 2020, 115(10):1624-1633. [11] Moestrup S K, Møller H J. CD163: a regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response[J]. Ann Med, 2004, 36(5): 347-354. [12] Fouad R, Hamza I, Khairy M, et al. Role of serum soluble CD163 in the diagnosis, risk of bleeding, and prognosis of gastro-esophageal varices in cirrhotic patients[J]. J Interferon Cytokine Res, 2017, 37(3):112-118. [13] Grønbaek H, Sandahl T D, Mortensen C, et al. Soluble CD163, a marker of Kupffer cell activation, is related to portal hypertension in patients with liver cirrhosis[J]. Aliment Pharmacol Ther, 2012, 36(2): 173-180. [14] Ferlitsch M, Reiberger T, Hoke M, et al. von Willebrand factor as new noninvasive predictor of portal hypertension, decompensation and mortality in patients with liver cirrhosis[J]. Hepatology, 2012, 56(4): 1439-1447. [15] Peck-Radosavljevic M. Thrombocytopenia in chronic liver disease[J]. Liver Int, 2017, 37(6): 778-793. [16] Hametner S, Ferlitsch A, Ferlitsch M, et al. The VITRO score (von Willebrand factor antigen/thrombocyte ratio) as a new marker for clinically significant portal hypertension in comparison to other non-invasive parameters of fibrosis including ELF test[J]. PLoS One, 2016, 11(2): e0149230. [17] Buck M, Garcia-Tsao G, Groszmann R J, et al. Novel inflammatory biomarkers of portal pressure in compensated cirrhosis patients[J]. Hepatology, 2014, 59(3): 1052-1059. [18] Wang L, Feng Y, Ma X, et al. Diagnostic efficacy of noninvasive liver fibrosis indexes in predicting portal hypertension in patients with cirrhosis[J]. PloS One, 2017, 12(8): e0182969. [19] Melgar-Lesmes P, Pauta M, Reichenbach V, et al. Hypoxia and proinflammatory factors upregulate apelin receptor expression in human stellate cells and hepatocytes[J]. Gut, 2011, 60(10): 1404-1411. [20] Vizzutti F, Romanelli R G, Arena U, et al. ADMA correlates with portal pressure in patients with compensated cirrhosis[J]. Eur J Clin Invest, 2007, 37(6): 509-515. [21] Sandahl T D, Støy S H, Laursen T L, et al. The soluble mannose receptor (sMR) is elevated in alcoholic liver disease and associated with disease severity, portal hypertension, and mortality in cirrhosis patients[J]. PloS One, 2017, 12(12): e0189345. [22] Kim M Y, Baik S K, Park D H, et al. Damping index of Doppler hepatic vein waveform to assess the severity of portal hypertension and response to propranolol in liver cirrhosis: a prospective nonrandomized study[J]. Liver Int, 2007, 27(8): 1103-1110. [23] Han S K. Application of ultrasound for the diagnosis of cirrhosis/portal hypertension[J]. J Med Ultrason, 2022, 49(3):321-331. [24] Benacerraf B R. Three-dimensional volume imaging in gynecology[J]. Obstet Gynecol Clin North Am, 2019, 46(4): 755-781. [25] Shi K Q, Fan Y C, Pan Z Z, et al. Transient elastography: a meta-analysis of diagnostic accuracy in evaluation of portal hypertension in chronic liver disease[J]. Liver Int, 2013, 33(1): 62-71. [26] Selvaraj E A, Mózes F E, Jayaswal A N A, et al. Diagnostic accuracy of elastography and magnetic resonance imaging in patients with NAFLD: a systematic review and meta-analysis[J]. J Hepatol, 2021, 75(4): 770-785. [27] Cui X W, Li K N, Yi A J, et al. Ultrasound elastography[J]. Endosc Ultrasound, 2022, 11(4): 252-274. [28] da Silva R G, de Miranda M L Q, de Araújo Caldeira Brant P E, et al. Acoustic radiation force impulse elastography and liver fibrosis risk scores in severe obesity[J]. Arch Endocrinol Metab, 2021, 65(6): 730-738. [29] Huang Y, Zhao L, He R, et al. A strategy for varices screening based on acoustic radiation force impulse combined with platelet (CHESS2001): an alternative of Baveno Ⅵ criteria[J]. Hepatol Commun, 2022, 6(11): 3154-3162. [30] Dong B, Chen Y, Lyu G, et al. Quantitative assessment of portal hypertension by two-dimensional shear wave elastography in rat models of nonalcoholic fatty liver disease: comparison with four composite scores[J]. Front Med, 2022, 9: 844558. [31] Stefanescu H, Rusu C, Lupsor-Platon M, et al. Liver stiffness assessed by ultrasound shear wave elastography from general electric accurately predicts clinically significant portal hypertension in patients with advanced chronic liver disease[J]. Ultraschall Med, 1980, 2020, 41(5): 526-533. [32] Jansen C, Bogs C, Verlinden W, et al. Shear-wave elastography of the liver and spleen identifies clinically significant portal hypertension: a prospective multicentre study[J]. Liver Int, 2017, 37(3): 396-405. [33] Jansen C, Bogs C, Verlinden W, et al. Algorithm to rule out clinically significant portal hypertension combining Shear-wave elastography of liver and spleen: a prospective multicentre study[J]. Gut, 2016, 65(6): 1057-1058. [34] Park C C, Nguyen P, Hernandez C, et al. Magnetic resonance elastography vs transient elastography in detection of fibrosis and noninvasive measurement of steatosis in patients with biopsy-proven nonalcoholic fatty liver disease[J]. Gastroenterology, 2017, 152(3): 598-607. [35] Shi Y, Qi Y-F, Lan G-Y, et al. Three-dimensional MR elastography depicts liver inflammation, fibrosis, and portal hypertension in chronic hepatitis B or C[J]. Radiology, 2021, 301(1): 154-162. [36] Pons M, Augustin S, Scheiner B, et al. Noninvasive diagnosis of portal hypertension in patients with compensated advanced chronic liver disease[J]. Am J Gastroenterol, 2021, 116(4): 723-732. [37] Perri R E, Chiorean M V, Fidler J L, et al. A prospective evaluation of computerized tomographic (CT) scanning as a screening modality for esophageal varices[J]. Hepatology, 2008, 47(5): 1587-1594. [38] Wan S, Wei Y, Zhang X, et al. Computed tomography-based texture features for the risk stratification of portal hypertension and prediction of survival in patients with cirrhosis: a preliminary study[J]. Front Med, 2022, 9: 863596. [39] Wan S, Wei Y, Zhang X, et al. CT-derived quantitative liver volumetric parameters for prediction of severe esophageal varices and the risk of first variceal hemorrhage[J]. Eur J Radiol, 2021, 144: 109984. [40] Smith A D, Branch C R, Zand K, et al. Liver surface nodularity quantification from routine CT images as a biomarker for detection and evaluation of cirrhosis[J]. Radiology, 2016, 280(3): 771-781. [41] Bastati N, Beer L, Ba-Ssalamah A, et al. Gadoxetic acid-enhanced MRI-derived functional liver imaging score (FLIS) and spleen diameter predict outcomes in ACLD[J]. J Hepatol, 2022, 77(4): 1005-1013. [42] Zhang D, Deng J, Guo X, et al. Nomogram model for predicting esophsagogastric varices in hepatocellular carcinoma with cirrhosis[J]. Eur J Gastroenterol Hepatol, 2023, 35(3): 342-348. [43] Kim B H, Chung J W, Lee C S, et al. Liver volume index predicts the risk of esophageal variceal hemorrhage in cirrhotic patients on propranolol prophylaxis[J]. Korean J Intern Med, 2019, 34(6): 1233-1243. [44] Deng H, Qi X, Guo X. Computed tomography for the diagnosis of varices in liver cirrhosis: a systematic review and meta-analysis of observational studies[J]. Postgrad Med, 2017, 129(3): 318-328. [45] Wang C, Huang Y, Liu C, et al. Diagnosis of clinically significant portal hypertension using CT- and MRI-based vascular model[J]. Radiology, 2023, 307(2): e221648. [46] Alzoubi O, Arar A, Singh V, et al. MRI in liver cirrhosis[J]. Portal Hypertens Cirrhosis, 2022, 1(1): 23-41. [47] Palaniyappan N, Cox E, Bradley C, et al. Non-invasive assessment of portal hypertension using quantitative magnetic resonance imaging[J]. J Hepatol, 2016, 65(6): 1131-1139. [48] Pavlides M, Banerjee R, Sellwood J, et al. Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease[J]. J Hepatol, 2016, 64(2): 308-315. |
[1] | 余姣, 万谟彬. 慢性乙型肝炎患者中丁型肝炎病毒共感染的筛查与治疗研究进展[J]. 肝脏, 2024, 29(7): 762-766. |
[2] | 方青青, 李锋, 陈世耀, 陈颖. 肝硬化急性失代偿的机制研究与争议[J]. 肝脏, 2024, 29(7): 766-769. |
[3] | 牛日雨, 尹伟, 王益杰, 李成忠. 失代偿期肝硬化再代偿的研究进展[J]. 肝脏, 2024, 29(7): 770-773. |
[4] | 孔维菊, 任传路, 周昱岐, 李竞争, 何清, 袁俊菲. 血清PIVKA-Ⅱ在HBV相关肝癌患者中的表达及其与肝功能的相关性[J]. 肝脏, 2024, 29(7): 794-797. |
[5] | 闫玉凤, 袁敏, 何阳, 涂传涛, 施裕新, 王琳, 王越, 傅青春. 基于数字化管理门静脉高压多学科会诊及管理平台的构建及应用[J]. 肝脏, 2024, 29(7): 802-807. |
[6] | 王志钢, 颜瑞龙, 袁翠华. N-乙酰半胱氨酸对伴有肝硬化患者肝切除围手术期肝肾功能的保护作用[J]. 肝脏, 2024, 29(7): 808-839. |
[7] | 傅鹏, 唐亚丹, 杨方方, 杨立新. 乙型肝炎肝硬化不同性质结节在超声造影灌注时相的增强表现特点[J]. 肝脏, 2024, 29(7): 813-816. |
[8] | 王丽惠, 刘双平, 卢秋燕, 沈培根, 徐成润. 乙型肝炎肝硬化隐匿型肝性脑病的影响因素及预后评价[J]. 肝脏, 2024, 29(7): 817-820. |
[9] | 唐海涛, 王娴, 周佳琦, 王凤梅, 张文华. 富马酸丙酚替诺福韦治疗初治失代偿期乙型肝炎肝硬化患者的临床研究[J]. 肝脏, 2024, 29(7): 830-833. |
[10] | 马超, 敬进华, 余虹, 李玉玉, 郭峰. 肝硬化与肝性骨病的研究进展[J]. 肝脏, 2024, 29(7): 870-873. |
[11] | 莫瑞东, 殷荣坤, 盛滋科, 谢青. 门静脉海绵样变性合并骨髓增殖性疾病1例[J]. 肝脏, 2024, 29(7): 881-883. |
[12] | 李菊红, 郝彦琴, 石敏. 乙型肝炎肝硬化失代偿期患者合并肝性脊髓病的临床特征分析[J]. 肝脏, 2024, 29(6): 687-690. |
[13] | 王晓娟, 王继涛, 李金龙, 王文川, 孟令雷, 苗杰, 高凤霄. CT平扫测量食管壁厚度与胃镜下红色征的相关性[J]. 肝脏, 2024, 29(6): 691-694. |
[14] | 蒋菁蓉, 张天洪, 陈婧. 肝硬化并SBP患者外周血SAA、WBC/PLT、CD64及腹水CD64联合检测的意义[J]. 肝脏, 2024, 29(6): 695-698. |
[15] | 陈凤, 李艳, 唐文勇, 翁旭丹, 吕敏丽, 仲建全. 基于CT影像组学评估肝硬化患者肝脏储备功能的价值研究[J]. 肝脏, 2024, 29(6): 699-705. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||