[1] Wiest R, Albillos A, Trauner M,et al. Targeting the gut-liver axis in liver disease[J]. J Hepatol,2017,67(5):1084-1103. [2] Zhou J, Zhou F, Wang W, et al. Epidemiological features of NAFLD from 1999 to 2018 in China[J]. Hepatology,2020,71(5):1851-1864. [3] Wong W K, Chan W K. Nonalcoholic fatty liver disease: a global perspective[J]. Clin Ther,2021,43(3):473-499. [4] 刘莉,郝欣.针灸联合益生菌对非酒精性脂肪肝治疗的临床疗效[J].中国老年学杂志,2022,42(8):1853-1856. [5] Tripathi A, Debelius J, Brenner D A,et al. The gut-liver axis and the intersection with the microbiome[J]. Nat Rev Gastroenterol Hepatol,2018,15(7):397-411. [6] Ji Y, Yin Y, Sun L,et al. The molecular and mechanistic insights based on gut-liver axis: nutritional target for non-alcoholic fatty liver disease (NAFLD) improvement[J]. Int J Mol Sci,2020,21(9):3066. [7] Suk K T, Kim D J. Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease[J]. Expert Rev Gastroenterol Hepatol,2019,13(3):193-204. [8] Leng J, Tian H J, Fang Y,et al. Amelioration of non-alcoholic steatohepatitis by atractylodes macrocephala polysaccharide, chlorogenic acid, and geniposide combination is associated with reducing endotoxin gut leakage[J]. Front Cell Infect Microbiol,2022,12:827516. [9] He S, Cui S, Song W,et al. Interleukin-17 weakens the NAFLD/NASH process by facilitating intestinal barrier restoration depending on the gut microbiota[J]. mBio,2022,13(2):e0368821. [10] Kaushal K,Agarwal S,Sharma S,et al.Demonstration of gut-barrier dysfunction in early stages of non-alcoholic fatty liver disease: a proof-of-concept study[J]. J Clin Exp Hepatol,2022,12(4):1102-1113. [11] Lechner S, Yee M, Limketkai B N, et al. Fecal microbiota transplantation for chronic liver diseases: current understanding and future direction[J]. Dig Dis Sci,2020,65(3):897-905. [12] Fang J,Yu C H,Li X J,et al.Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications[J]. Front Cell Infect Microbiol,2022,12:997018. [13] Mouries J, Brescia P, Silvestri A,et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development[J]. J Hepatol,2019,71(6):1216-1228. [14] Li X,Su C,Jiang Z,et al.Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome[J]. NPJ Biofilms Microbiomes,2021,7(1):36. [15] Cao Y N, Yue S S, Wang A Y,et al. Antrodia cinnamomea and its compound dehydroeburicoic acid attenuate nonalcoholic fatty liver disease by upregulating ALDH2 activity[J]. J Ethnopharmacol,2022,292:115146. [16] Ding N, Wang K, Jiang H,et al. AGK regulates the progression to NASH by affecting mitochondria complex I function[J]. Theranostics,2022,12(7): 3237-3250. [17] Shi C, Pei M, Wang Y,et al. Changes of flavin-containing monooxygenases and trimethylamine-N-oxide may be involved in the promotion of non-alcoholic fatty liver disease by intestinal microbiota metabolite trimethylamine[J]. Biochem Biophys Res Commun,2022,594:1-7. [18] Fiorucci S, Distrutti E.The pharmacology of bile acids and their receptors[J]. Handb Exp Pharmacol,2019,256:3-18. [19] Yang Z H,Liu F,Zhu X R,et al. Altered profiles of fecal bile acids correlate with gut microbiota and inflammatory responses in patients with ulcerative colitis[J]. World J Gastroenterol,2021,27(24):3609-3629. [20] Sun Y, Zhu M, Zhao H,et al. Serum fibroblast growth factor 19 and total bile acid concentrations are potential biomarkers of hepatocellular carcinoma in patients with type 2 diabetes mellitus[J]. Biomed Res Int, 2020,1751989. [21] Alferink L J M, Radjabzadeh D, Erler N S,et al. Microbiomics, metabolomics, predicted metagenomics, and hepatic steatosis in a population-based study of 1,355 adults[J]. Hepatology,2021,73(3):968-982. [22] Frost F,Kacprowski T,Rühlemann M,et al.Long-term instability of the intestinal microbiome is associated with metabolic liver disease, low microbiota diversity, diabetes mellitus and impaired exocrine pancreatic function[J]. Gut,2021,70(3):522-530. [23] Demir M, Lang S, Hartmann P,et al. The fecal mycobiome in non-alcoholic fatty liver disease[J]. J Hepatol,2022,76(4):788-799. [24] Lee G, You H J, Bajaj J S, et al. Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD[J]. Nat Commun,2020,11(1):4982. [25] Liu C, Wang Y L,Yang Y Y,et al. Novel approaches to intervene gut microbiota in the treatment of chronic liver diseases[J]. FASEB J,2021,35(10):e21871. [26] Philips C A, Pande A, Shasthry S M,et al. Healthy donor fecal microbiota transplantation in steroid-ineligible severe alcoholic hepatitis: a pilot study[J]. Clin Gastroenterol Hepatol,2017,15(4):600-602. [27] Lee N Y, Suk K T. The role of the gut microbiome in liver cirrhosis treatment[J]. Int J Mol Sci,2020,22(1):199. [28] Bajaj J S.Altered microbiota in cirrhosis and its relationship to the development of infection[J]. Clin Liver Dis (Hoboken),2019,14(3):107-111. [29] Acharya C, Bajaj J S. Altered microbiome in patients with cirrhosis and complications[J]. Clin Gastroenterol Hepatol,2019,17(2):307-321. [30] Marengo A, Rosso C, Bugianesi E. Liver cancer: connections with obesity, fatty liver, and cirrhosis[J]. Annu Rev Med,2016,67:103-117. [31] Notarnicola M, Osella A R, Caruso M G,et al. Nonalcoholic fatty liver disease: focus on new biomarkers and lifestyle interventions[J]. Int J Mol Sci,2021,22(8):3899. [32] Leung H, Long X, Ni Y,et al. Risk assessment with gut microbiome and metabolite markers in NAFLD development[J]. Sci Transl Med,2022,14(648):eabk0855. [33] Li C Y, Dempsey J L, Wang D,et al. PBDEs altered gut microbiome and bile acid homeostasis in male C57BL/6 mice[J]. Drug Metab Dispos,2018,46(8):1226-1240. [34] De Filippo C, Cavalieri D, Di Paola M,et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa[J]. Proc Natl Acad Sci USA,2010,107(33):14691-14696. [35] Jensen T, Abdelmalek M F, Sullivan S, et al. Fructose and sugar: a major mediator of non-alcoholic fatty liver disease[J]. J Hepatol,2018,68(5):1063-1075. [36] Sellmann C, Priebs J, Landmann M,et al. Diets rich in fructose, fat or fructose and fat alter intestinal barrier function and lead to the development of nonalcoholic fatty liver disease over time[J]. J Nutr Biochem,2015,26(11):1183-1192. [37] Febbraio M A, Karin M. "Sweet death": Fructose as a metabolic toxin that targets the gut-liver axis[J]. Cell Metab,2021,33(12):2316-2328. [38] Chassaing B, Compher C, Bonhomme B, et al. Randomized controlled-feeding study of dietary emulsifier carboxymethylcellulose reveals detrimental impacts on the gut microbiota and metabolome[J]. Gastroenterology,2022,162(3):743-756. [39] Von Schwartzenberg R J,Bisanz J E,Lyalina S,et al.Caloric restriction disrupts the microbiota and colonization resistance[J].Nature,2021,595(7866):272- 277. [40] Jordan S, Tung N, Casanova-Acebes M, et al. Dietary intake regulates the circulating inflammatory monocyte pool[J].Cell,2019,178(5):1102-1114. e17. [41] Fabbiano S, Suárez-Zamorano N, Chevalier C, et al. Functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements[J]. Cell Metab,2018,28(6):907-921.e7. [42] Cai H, Qin Y L, Shi Z Y,et al. Effects of alternate-day fasting on body weight and dyslipidaemia in patients with non-alcoholic fatty liver disease: a randomised controlled trial[J]. BMC Gastroenterol,2019,19(1):219. [43] Colca J R, McDonald W G, Adams W J. MSDC-0602K, a metabolic modulator directed at the core pathology of non-alcoholic steatohepatitis[J]. Expert Opin Investig Drugs,2018,27(7):631-636. [44] Vuppalanchi R,Chalasani N.Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: Selected practical issues in their evaluation and management[J]. Hepatology,2009,49(1):306-317. [45] Milosevic I, Vujovic A, Barac A,et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: a review of the literature[J]. Int J Mol Sci,2019,20(2):395. |