[1] KarlsenT H, Folseraas T, Thorburn D, et al. Primary sclerosing cholangitis-a comprehensive review[J]. J Hepatol, 2017, 67(6): 1298-1323. [2] ZimmerC L, von Seth E, Buggert M, et al. A biliary immune landscape map of primary sclerosing cholangitis reveals a dominant network of neutrophils and tissue-resident T cells[J].Sci Transl Med,2021,13(599):eabb3107. [3] SchönM P, Erpenbeck L. The Interleukin-23/Interleukin-17 Axis Links Adaptive and Innate Immunity in Psoriasis[J]. Front Immunol, 2018, 9: 1323. [4] HintermannE, Tondello C, Fuchs S, et al. Blockade of neutrophil extracellular trap components ameliorates cholestatic liver disease in Mdr2 (Abcb4) knockout mice[J]. J Autoimmun, 2024, 146: 103229. [5] PochT, Krause J, Casar C, et al. Single-cell atlas of hepatic T cells reveals expansion of liver-resident naive-like CD4+ T cells in primary sclerosing cholangitis[J]. J Hepatol, 2021, 75(2): 414-423. [6] KunzmannL K, Schoknecht T, Poch T, et al. Monocytes as Potential Mediators of Pathogen-Induced T-Helper 17 Differentiation in Patients With Primary Sclerosing Cholangitis (PSC)[J]. Hepatology, 2020, 72(4): 1310-1326. [7] NakamotoN, Sasaki N, Aoki R, et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis[J]. Nat Microbiol, 2019, 4(3): 492-503. [8] SebodeM, Peiseler M, Franke B, et al. Reduced FOXP3(+) regulatory T cells in patients with primary sclerosing cholangitis are associated with IL2RA gene polymorphisms[J]. J Hepatol, 2014, 60(5): 1010-1016. [9] SchwingeD, von Haxthausen F, Quaas A, et al. Dysfunction of hepatic regulatory T cells in experimental sclerosing cholangitis is related to IL-12 signaling[J]. J Hepatol, 2017, 66(4): 798-805. [10] RavichandranG, Neumann K, Berkhout LK, et al. Interferon-γ-dependent immune responses contribute to the pathogenesis of sclerosing cholangitis in mice[J]. J Hepatol, 2019, 71(4):773-782. [11] LiY, Li B, Xiao X, et al. Itaconate inhibits CD103 + T RM cells and alleviates hepatobiliary injury in mouse models of primary sclerosing cholangitis[J]. Hepatology, 2024, 79(1): 25-38. [12] KellererM, Javed S, Casar C, et al. Antagonistic effects of the cytotoxic molecules granzyme B and TRAIL in the immunopathogenesis of sclerosing cholangitis[J]. Hepatology, 2024, 80(4): 844-858. [13] BjörkströmN K. Immunobiology of the biliary tract system[J]. J Hepatol, 2022, 77(6): 1657-1669. [14] vonSeth E, Zimmer C L, Reuterwall-Hansson M, et al. Primary sclerosing cholangitis leads to dysfunction and loss of MAIT cells[J]. Eur J Immunol, 2018, 48(12): 1997-2004. [15] ValestrandL, Zheng F, Hansen S H, et al. Bile from Patients with Primary Sclerosing Cholangitis Contains Mucosal-Associated Invariant T-Cell Antigens[J]. Am J Pathol, 2022, 192(4): 629-641. [16] ValestrandL, Berntsen N L, Zheng F, et al. Lipid antigens in bile from patients with chronic liver diseases activate natural killer T cells[J]. Clin Exp Immunol, 2021, 203(2): 304-314. [17] TedescoD, Thapa M, Chin C Y, et al. Alterations in Intestinal Microbiota Lead to Production of Interleukin 17 by Intrahepatic γδ T-Cell Receptor-Positive Cells and Pathogenesis of Cholestatic Liver Disease[J]. Gastroenterology, 2018, 154(8): 2178-2193. [18] GuicciardiM E, Trussoni C E, Krishnan A, et al. Macrophages contribute to the pathogenesis of sclerosing cholangitis in mice[J]. J Hepatol, 2018, 69(3): 676-686. [19] GreenmanR, Segal-Salto M, Barashi N, et al. CCL24 regulates biliary inflammation and fibrosis in primary sclerosing cholangitis[J]. JCI insight, 2023, 8(12): e162270. [20] ChenR, Huang B, Lian M, et al. A+T rich interaction domain protein 3a (Arid3a) impairs Mertk-mediated efferocytosis in cholestasis[J]. J Hepatol, 2023, 79(6): 1478-1490. [21] AndrewsT S, Nakib D, Perciani C T, et al. Single-cell, single-nucleus, and spatial transcriptomics characterization of the immunological landscape in the healthy and PSC human liver[J]. J Hepatol, 2024, 80(5): 730-743. [22] MikulakJ, Bruni E, Oriolo F, et al. Hepatic Natural Killer Cells: Organ-Specific Sentinels of Liver Immune Homeostasis and Physiopathology[J]. Front Immunol, 2019, 10: 946. [23] ZecherB F, Ellinghaus D, Schloer S, et al. HLA-DPA1*02:01~B1*01:01 is a risk haplotype for primary sclerosing cholangitis mediating activation of NKp44+ NK cells[J]. Gut, 2024, 73(2): 325-337. [24] LiuB, Yang G X, Sun Y, et al. Decreased CD57 expression of natural killer cells enhanced cytotoxicity in patients with primary sclerosing cholangitis[J]. Front Immunol, 2022, 13: 912961. [25] GuillotA, Winkler M, Silva Afonso M, et al. Mapping the hepatic immune landscape identifies monocytic macrophages as key drivers of steatohepatitis and cholangiopathy progression[J]. Hepatology, 2023, 78(1): 150-166. [26] ChungB K, Henriksen E K K, Jørgensen K K, et al. Gut and Liver B Cells of Common Clonal Origin in Primary Sclerosing Cholangitis-Inflammatory Bowel Disease[J]. Hepatol Commun, 2018, 2(8): 956-967. [27] ThapaM, Tedesco D, Gumber S, et al. Blockade of BAFF Reshapes the Hepatic B Cell Receptor Repertoire and Attenuates Autoantibody Production in Cholestatic Liver Disease[J]. J Immunol, 2020, 204(12): 3117-3128. [28] ShawD G, Aguirre-Gamboa R, Vieira M C, et al. Antigen-driven colonic inflammation is associated with development of dysplasia in primary sclerosing cholangitis[J]. Nat Med, 2023, 29(6): 1520-1529. [29] ChungB K, Guevel B T, Reynolds G M, et al. Phenotyping and auto-antibody production by liver-infiltrating B cells in primary sclerosing cholangitis and primary biliary cholangitis[J]. J Autoimmun, 2017, 77: 45-54. |