肝脏 ›› 2025, Vol. 30 ›› Issue (6): 876-881.
林涵, 郭永红
收稿日期:
2024-11-10
出版日期:
2025-06-30
发布日期:
2025-08-08
通讯作者:
郭永红,Email: gyh01678@glhospital.com
基金资助:
Received:
2024-11-10
Online:
2025-06-30
Published:
2025-08-08
摘要: 铁代谢失调(表现为血清铁蛋白水平的提升)及铁死亡现象在代谢相关脂肪性肝病(MAFLD)的疾病进程中扮演了关键角色。本综述旨在探讨铁死亡在MAFLD中的作用机制及其研究进展,同时评估铁死亡抑制剂在MAFLD治疗中的潜在价值,通过深入剖析铁死亡与MAFLD之间的相互关系,以期为未来的研究探索和临床治疗策略的制订提供理论基础与科学依据。
林涵, 郭永红. 铁死亡在代谢相关脂肪性肝病中的作用机制及研究进展[J]. 肝脏, 2025, 30(6): 876-881.
[1] Song Y, Li C, Luo Y, et al. CCN6 improves hepatic steatosis, inflammation, and fibrosis in non-alcoholic steatohepatitis [J]. Liver Int, 2023, 43(2): 357-369. [2] Loomba R, Adams L A. The 20% rule of NASH progression: the natural history of advanced fibrosis and cirrhosis caused by NASH [J]. Hepatology, 2019, 70(6): 1885-1888. [3] Hentze M W, Muckenthaler M U, Galy B, et al. Two to tango: regulation of Mammalian iron metabolism [J]. Cell, 2010, 142(1): 24-38. [4] Koskenkorva-Frank T S, Weiss G, Koppenol W H, et al. The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress [J]. Free Radic Biol Med, 2013, 65: 1174-1194. [5] Czaja A J. Review article: iron disturbances in chronic liver diseases other than haemochromatosis - pathogenic, prognostic, and therapeutic implications [J]. Aliment Pharmacol Ther, 2019, 49(6): 681-701. [6] Yang Z, Wu J, Li X, et al. Association between dietary iron intake and the prevalence of nonalcoholic fatty liver disease: a cross-sectional study [J]. Medicine (Baltimore), 2019, 98(43): e17613. [7] Hernández-Aguilera A, Casacuberta N, Castañé H, et al. Nonalcoholic steatohepatitis modifies serum iron-related variables in patients with morbid obesity [J]. Biol Trace Elem Res, 2021, 199(12): 4555-4563. [8] Kowdley K V, Belt P, Wilson L A, et al. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease [J]. Hepatology, 2012, 55(1): 77-85. [9] Wang J W, Jin C H, Ke J F, et al. Serum iron is closely associated with metabolic dysfunction-associated fatty liver disease in type 2 diabetes: a real-world study [J]. Front Endocrinol (Lausanne), 2022, 13: 942412. [10] Tong J, Lan X T, Zhang Z, et al. Ferroptosis inhibitor liproxstatin-1 alleviates metabolic dysfunction-associated fatty liver disease in mice: potential involvement of PANoptosis [J]. Acta Pharmacol Sin, 2023, 44(5): 1014-1028. [11] Gao H, Jin Z, Bandyopadhyay G, et al. Aberrant iron distribution via hepatocyte-stellate cell axis drives liver lipogenesis and fibrosis [J]. Cell Metab, 2022, 34(8): 1201-1213. e5. [12] Salaye L, Bychkova I, Sink S, et al. A low iron diet protects from steatohepatitis in a mouse model [J]. Nutrients, 2019, 11(9):2172. [13] Asrani S K, Devarbhavi H, Eaton J, et al. Burden of liver diseases in the world [J]. J Hepatol, 2019, 70(1): 151-171. [14] Friedman S L, Neuschwander-Tetri B A, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies [J]. Nat Med, 2018, 24(7): 908-922. [15] Tan L, Zhou Q, Liu J, et al. Association of iron status with non-alcoholic fatty liver disease and liver fibrosis in US adults: a cross-sectional study from NHANES 2017-2018 [J]. Food Funct, 2023, 14(12): 5653-5662. [16] Moreno-Navarrete J M, Novelle M G, Catalán V, et al. Insulin resistance modulates iron-related proteins in adipose tissue [J]. Diabetes Care, 2014, 37(4): 1092-1100. [17] Krisai P, Leib S, Aeschbacher S, et al. Relationships of iron metabolism with insulin resistance and glucose levels in young and healthy adults [J]. Eur J Intern Med, 2016, 32: 31-37. [18] Altamura S, Müdder K, Schlotterer A, et al. Iron aggravates hepatic insulin resistance in the absence of inflammation in a novel db/db mouse model with iron overload [J]. Mol Metab, 2021, 51: 101235. [19] Varghese J, James J V, Anand R, et al. Development of insulin resistance preceded major changes in iron homeostasis in mice fed a high-fat diet [J]. J Nutr Biochem, 2020, 84: 108441. [20] Britton L J, Subramaniam V N, Crawford D H. Iron and non-alcoholic fatty liver disease [J]. World J Gastroenterol, 2016, 22(36): 8112-8122. [21] Lee Y S, Hwang L C. The association between different obesity phenotypes and liver fibrosis scores in elderly individuals with fatty liver in Taiwan [J]. Diabetes Metab Syndr Obes, 2021, 14: 1473-1483. [22] Zhao X, Ma Y, Shi M, et al. Excessive iron inhibits insulin secretion via perturbing transcriptional regulation of SYT7 by OGG1 [J]. Cell Mol Life Sci, 2023, 80(6): 159. [23] Jiang X, Stockwell B R. Ferroptosis: mechanisms, biology and role in disease [J]. Nat Rev Mol Cell Biol, 2021, 22(4): 266-282. [24] Nassir F. NAFLD: mechanisms, treatments, and biomarkers [J]. Biomolecules, 2022, 12(6):824. [25] Commoner B, Townsend J, Pake G E. Free radicals in biological materials [J]. Nature, 1954, 174(4432): 689-691. [26] Chen Z, Tian R, She Z, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease [J]. Free Radic Biol Med, 2020, 152: 116-141. [27] Tsurusaki S, Tsuchiya Y, Koumura T, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis [J]. Cell Death Dis, 2019, 10(6): 449. [28] Li X, Wang T X, Huang X, et al. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity [J]. Liver Int, 2020, 40(6): 1378-1394. [29] Khanmohammadi S, Kuchay M S. Toll-like receptors and metabolic (dysfunction)-associated fatty liver disease [J]. Pharmacol Res, 2022, 185: 106507. [30] Masarone M, Rosato V, Dallio M, et al. Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease [J]. Oxid Med Cell Longev, 2018, 2018: 9547613. [31] Pietrangelo A. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment [J]. Gastroenterology, 2010, 139(2): 393-408, 408.e391-e392. [32] Von Krusenstiern A N, Robson R N. Identification of essential sites of lipid peroxidation in ferroptosis [J]. Nat Chem Biol, 2023, 19(6): 719-730. [33] Podszun M C, Chung J Y. 4-HNE immunohistochemistry and image analysis for detection of lipid peroxidation in human liver samples using vitamin E treatment in NAFLD as a proof of concept [J]. J Histochem Cytochem, 2020, 68(9): 635-643. [34] Bellanti F, Villani R, Facciorusso A, et al. Lipid oxidation products in the pathogenesis of non-alcoholic steatohepatitis [J]. Free Radic Biol Med, 2017, 111: 173-185. [35] Doll S, Freitas F P, Shah R, et al. FSP1 is a glutathione-independent ferroptosis suppressor [J]. Nature, 2019, 575(7784): 693-698. [36] Qi J, Kim J W, Zhou Z, et al. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice [J]. Am J Pathol, 2020, 190(1): 68-81. [37] Xue J, Yu C, Sheng W, et al. The Nrf2/GCH1/BH4 axis ameliorates radiation-induced skin injury by modulating the ROS cascade [J]. J Invest Dermatol, 2017, 137(10): 2059-2068. [38] Day K, Seale L A, Graham R M, et al. Selenotranscriptome network in non-alcoholic fatty liver disease [J]. Front Nutr, 2021, 8: 744825. [39] Ingold I, Berndt C, Schmitt S, et al. Selenium utilization by GPX4 is required to prevent hydroperoxide-induced ferroptosis [J]. Cell, 2018, 172(3): 409-422.e421. [40] Wang S, Liu Z, Geng J, et al. An overview of ferroptosis in non-alcoholic fatty liver disease [J]. Biomed Pharmacother, 2022, 153: 113374. [41] Zhu Z, Zhang Y, Huang X, et al. Thymosin beta 4 alleviates non-alcoholic fatty liver by inhibiting ferroptosis via up-regulation of GPX4 [J]. Eur J Pharmacol, 2021, 908: 174351. [42] Zhang J, Xie H, Yao J, et al. TRIM59 promotes steatosis and ferroptosis in non-alcoholic fatty liver disease via enhancing GPX4 ubiquitination [J]. Hum Cell, 2023, 36(1): 209-222. [43] Tong J, Li D, Meng H, et al. Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat metabolic-associated fatty liver disease [J]. Acta Pharm Sin B, 2022, 12(9): 3650-3666. [44] Valenti L, Fracanzani A L, Dongiovanni P, et al. Iron depletion by phlebotomy improves insulin resistance in patients with nonalcoholic fatty liver disease and hyperferritinemia: evidence from a case-control study [J]. Am J Gastroenterol, 2007, 102(6): 1251-1258. [45] Beaton M D, Chakrabarti S, Levstik M, et al. Phase Ⅱ clinical trial of phlebotomy for non-alcoholic fatty liver disease [J]. Aliment Pharmacol Ther, 2013, 37(7): 720-729. [46] Kanamori Y, Tanaka M, Itoh M, et al. Iron-rich Kupffer cells exhibit phenotypic changes during the development of liver fibrosis in NASH [J]. iScience, 2021, 24(2): 102032. [47] Kaji K, Yoshiji H, Kitade M, et al. Combination treatment of angiotensin Ⅱ type Ⅰ receptor blocker and new oral iron chelator attenuates progression of nonalcoholic steatohepatitis in rats [J]. Am J Physiol Gastrointest Liver Physiol, 2011, 300(6): G1094-G1104. [48] Chen K, Chen X, Xue H, et al. Coenzyme Q10 attenuates high-fat diet-induced non-alcoholic fatty liver disease through activation of the AMPK pathway [J]. Food Funct, 2019, 10(2): 814-823. [49] Jiang J X, Tomilov A, Montgomery C. Shc inhibitor idebenone ameliorates liver injury and fibrosis in dietary NASH in mice [J]. J Biochem Mol Toxicol, 2021, 35(10): e22876. [50] Imai H, Matsuoka M, Kumagai T, et al. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis [J]. Curr Top Microbiol Immunol, 2017, 403: 143-170. [51] Bell L N, Wang J, Muralidharan S, et al. Relationship between adipose tissue insulin resistance and liver histology in nonalcoholic steatohepatitis: a pioglitazone versus vitamin E versus placebo for the treatment of nondiabetic patients with nonalcoholic steatohepatitis trial follow-up study [J]. Hepatology, 2012, 56(4): 1311-1318. [52] Bril F, Cusi K. Management of nonalcoholic fatty liver disease in patients with type 2 diabetes: a call to action [J]. Diabetes Care, 2017, 40(3): 419-430. [53] Luo Y, Chen H, Liu H, et al. Protective effects of ferroptosis inhibition on high fat diet-induced liver and renal injury in mice [J]. Int J Clin Exp Pathol, 2020, 13(8): 2041-2049. [54] Wu A, Feng B, Yu J, et al. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis [J]. Redox Biol, 2021, 46: 102131. [55] Diehl A M, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis [J]. N Engl J Med, 2017, 377(21): 2063-2072. [56] Zhu X, Xiong T, Liu P, et al. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway [J]. Food Chem Toxicol, 2018, 114: 52-60. [57] Qin G, Ma J, Huang Q, et al. Isoquercetin improves hepatic lipid accumulation by activating AMPK pathway and suppressing TGF-β signaling on an HFD-Induced nonalcoholic fatty liver disease rat model [J]. Int J Mol Sci, 2018, 19(12):4126. [58] Wang Z X, Ma J, Li X Y, et al. Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and reactive oxygen species-dependent ferroptosis [J]. Br J Pharmacol, 2021, 178(5): 1133-1148. [59] Buniatian G H. Stages of activation of hepatic stellate cells: effects of ellagic acid, an inhibiter of liver fibrosis, on their differentiation in culture [J]. Cell Prolif, 2003, 36(6): 307-319. [60] Li L, Wang K, Jia R, et al. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation [J]. Redox Biol, 2022, 56: 102435. [61] Kong Z, Liu R, Cheng Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway [J]. Biomed Pharmacother, 2019, 109: 2043-2053. [62] Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting ferroptosis to iron out cancer [J]. Cancer Cell, 2019, 35(6): 830-849. [63] Kinoshita H, Okabe H, Beppu T, et al. Cystine/glutamic acid transporter is a novel marker for predicting poor survival in patients with hepatocellular carcinoma [J]. Oncol Rep, 2013, 29(2): 685-689. |
[1] | 路子瑶, 杨松. 酒精性肝病命名的中西方差异[J]. 肝脏, 2025, 30(5): 584-587. |
[2] | 方莹, 李武. miR-33a在代谢相关脂肪性肝病中的研究进展[J]. 肝脏, 2025, 30(5): 742-746. |
[3] | 孙祥云, 于庆红, 齐一菲, 白世锦, 刘天会. 二乙基二硫代氨基甲酸通过调控Perilipin 5改善肝细胞脂毒性损伤[J]. 肝脏, 2025, 30(4): 537-541. |
[4] | 丁剑波, 金爱华, 李秀惠, 李丽. 尿酸在非酒精性脂肪性肝病发生发展中的作用及机制[J]. 肝脏, 2025, 30(2): 272-275. |
[5] | 王昕, 饶慧瑛. 代谢相关脂肪性肝病合并肝硬化治疗的挑战与未来前景[J]. 肝脏, 2025, 30(1): 4-6. |
[6] | 李强, 陈良. 对MetALD新概念的认识以及相关药物研究进展[J]. 肝脏, 2025, 30(1): 7-9. |
[7] | 丁剑波, 李丽, 李秀惠. 青少年学生血尿酸水平与非酒精性脂肪性肝病发生、发展的关系[J]. 肝脏, 2025, 30(1): 87-90. |
[8] | 冯巩, 宋娟娟, 尤帅泓, 马晓汇, 严琴琴, 樊亚菲, 弥曼. 儿童乳糜泻与MAFLD研究进展与展望[J]. 肝脏, 2025, 30(1): 136-139. |
[9] | 黄震霆, 徐小萍, 吴静. 从非酒精性脂肪性肝病到代谢功能障碍相关脂肪性肝病的命名讨论[J]. 肝脏, 2024, 29(8): 900-904. |
[10] | 葛宇, 王超群, 陈怡, 沈若宇, 董旭. 血清尿酸肌酐比值与非肥胖型代谢相关脂肪性肝病的相关性分析[J]. 肝脏, 2024, 29(8): 985-989. |
[11] | 杜冰莹, 宋舒瑛, 谢青. EASL-EASD-EASO 代谢相关脂肪性肝病管理临床实践指南简介[J]. 肝脏, 2024, 29(6): 621-625. |
[12] | 赵倩, 赵彩彦. 肝脏类器官与代谢相关脂肪性肝病[J]. 肝脏, 2024, 29(6): 628-630. |
[13] | 张小雅, 沈起艳, 石春霞, 龚作炯. 铁死亡在肝脏疾病中的研究进展[J]. 肝脏, 2024, 29(6): 739-742. |
[14] | 曾静, 范建高. MASLD管理中无创检测替代肝活检添新证据:突破还是挑战?[J]. 肝脏, 2024, 29(5): 491-493. |
[15] | 丁剑波, 李秀惠. 白细胞在非酒精性脂肪性肝病发生及进展中的作用[J]. 肝脏, 2024, 29(5): 599-602. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||